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Abstract — In this paper we analyze two effects of the Lagrangian nature of turbulent transfer
that are usually ignored in the theory of turbulent combustion. They are (i) nonequilibrium
behavior of the turbulent diffusion coefficient, which is important for modeling of initial stage of
combustion in the SI engine, and (ii) the existence of a traveling front of turbulent diffusion with
finite speed, which controls the velocity of the steady state flame in strong turbulence. First
we derive the parabolic diffusion equation with both the diffusion and chemical source terms
expressed by Lagrangian characteristics of turbulence. We show that chemical transformation
does not influence the turbulent diffusion coefficient and this result is important for combustion
theories that relate the formation of the initial flame with the development of the diffusion
coefficient. Second, an hyperbolic diffusion equation based on hydrodynamics is derived and
we analyze relationship between velocities of the turbulent diffusion front and the speed of the
steady state premixed flame. In particular, in the case of the flamelet combustion mechanism
and strong turbulence, we state that the flame speed is very closed to the theoretical value of the
diffusion front velocity, which is equal to the root mean square of turbulent velocity fluctuations.

1. Introduction

The classical paradigm of diffusion transfer modeling is based on parabolic equations with
the turbulent diffusion coefficient Dt that is expressed in terms of Eulerian turbulent char-
acteristics Dt = const 〈u′2〉1/2L, where 〈u′2〉1/2 and L are the root mean square of turbulent
velocity fluctuation and the Eulerian integral legnthscale of turbulence, respectively. In
the case of homogeneous and stationary turbulence Dt is here constant. However, such
Eulerian approach misses qualitative effects that are caused by the Lagrangian nature of
turbulent transfer. In this paper we analyze two of these effects: i) the time-dependence
of the diffusion coefficient due to finite value of the Lagrangian timescale of turbulence,
and ii) the existence of the traveling turbulent diffusion front due to limited values of the
instantaneous fluctuations of the velocity, which requires to use an hyperbolic equation
instead of a parabolic one.

Though both these effects are discussed in the scientific literature (see, for example,
[1]), they are usually ignored in the engineering handbooks [2] and this neglect is justified
in many practical applications because the relaxation time of the diffusion coefficient
is small and, at the same time, the front speed is large with respect to the reference
time and velocity of the process, respectively. But these effects play an important role
in the theory of turbulent premixed combustion. In fact, an accurate description of
nonequilibrium behavior of the turbulent diffusion coefficient, i.e. its growing in time, is
important during the initial transient stage of the combustion process in the SI engine and
laboratory bombs with spark ignition (as well as in initial instants of the Bunsen flame),
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and the velocity of the diffusion front is one of the main parameters that controls the
speed of the steady state premixed flame. Mathematical analysis of these effects, using
statistical tools, is the subject of this paper.

In the first part of the paper we derive the parabolic equation with time-dependent
diffusion coefficient and chemical source expressed in terms of the Lagrangian probability
density function (PDF) and other Lagrangian characteristics of turbulence. We show
that the turbulent diffusion coefficient in this equation does not depend on chemical
transformation. This result is not trivial, as at first glance it appears, because, since new
species result from chemical reaction, a zero diffusivity at the initial instant for products
dispersion could be stated, as it is discussed sometimes in the literature [3]. However,
our exact mathematical analysis proves that it is not so and this result is important
for combustion models where the formation of the developed turbulent flame during the
initial stage is connected with the transient behavior of the turbulent diffusion coefficient
[4, 5].

In the second part of the paper, following [6, 7], on the basis of exact unclosed hydro-
dynamical equations we derive an hyperbolic equation with time dependent coefficients
which does not contain parameters to be empirically determined and this is a striking
property of the obtained equation. This equation gives a diffusion front velocity Uf that
equals 〈u′2〉1/2 and permits to have dispersion properties in agreement with the Taylor
theory [8] for an arbitrary Lagrangian velocity fluctuation autocorrelation function. In
particular, when constant coefficients are considered, the Taylor statement for the disper-
sion is satisfied by an exponential Lagrangian autocorrelation function. Moreover, when
a chemical source is accounted for, the relationships between the front velocity and the
speed of the steady state flame Uss

t are analyzed. This result is discussed especially with
respect to the classical prediction in strong turbulence Uss

t ≃ 〈u′2〉1/2 [9, 10], when the
combustion front speed does not depend on chemistry.

Since homogeneous, isotropic and stationary turbulence is considered, without loss of
generality the one-dimensional case with zero mean velocity is analyzed in the paper,
which is organized as follows. In Section 2 the Taylor theory is briefly reminded and a
spread misleading application in reactive mixture is highlighted and discussed. In Section
3 the finite front velocity transport equation is derived and the role of the front velocity
in the combustion process is analyzed. Finally in Section 4 the conclusions are given.

2. Parabolic transport equation with Lagrangian diffusion and

source terms

2.1. Remind on the Taylor theory

The Taylor theory of turbulent diffusion [8] is an exact kinematical theory, unlike closure
models of the equations of fluid dynamics. Given an homogeneous and stationary tur-
bulent velocity field with zero mean, the Taylor theory describes the random motion of
a fluid particle in terms of the Lagrangian velocity fluctuation autocorrelation function,
which is one of the statistical characteristics of turbulence. Since in this section we aim
to discuss some misunderstandings on the application of the Taylor results, especially in
combustion processes, in what follows we briefly remind the derivation of the main result.

The position of a fluid particle x is kinematically described by

x(t) = x0 +
∫ t

t0
v(τ)dτ , (1)
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where v(t) is the component in the x-direction of the particle velocity. Considering a
large number of realizations of the flow with the same initial condition (x0, t0) for every
particle, then the Lagrangian ensemble average gives x = x0. The particle dispersion
variance turns out to be

σ2(t − t0) = (x − x0)2 =
∫ t

t0

∫ t

t0
v(τ1)v(τ2) dτ1dτ2 =

∫ t

t0

∫ t

t0
BL(τ1 − τ2) dτ1dτ2 , (2)

where BL(t − t0) = v(t)v(t0), with BL(0) = 〈u′2〉, is the Lagrangian velocity fluctuation
autocorrelation function and, from stationarity, it depends solely on the elapsed time.
With the change of variables τ = τ2 − τ1 and s = (τ2 + τ1)/2 the double integral in (2)
reduces to

x2(t − t0) =
∫

0

t0−t
[(t − t0) + τ ]BL(τ) dτ +

∫ t−t0

0

[(t − t0) − τ ]BL(τ) dτ , (3)

that, using the symmetry property BL(τ) = BL(−τ), gives the final result

x2(t − t0) = 2
∫ t−t0

0

[(t − t0) − τ ]BL(τ) dτ . (4)

Let us consider the problem of turbulent transfer in the context of the parabolic dif-
fusion equation. Let the Lagrangian PDF of particle displacement PL = PL(x; t|x0, t0),
with PL → δ(x − x0) when t → t0, be the Gaussian function

PL(x; t|x0, t0) =
1√

2πσ2
exp

{

−(x − x0)
2

2σ2

}

, σ2 = σ2(t − t0) , (5)

which satisfies the parabolic diffusion equation

∂PL

∂t
= Dt

∂2PL

∂x2
. (6)

Substituting (5) in (6) and subsequently using (4) give

Dt(t − t0) =
1

2

dx2

dt
(a) , Dt(t − t0) =

∫ t−t0

0

BL(τ) dτ (b) , (7)

from which it follows that Dt depends on time and it is a monotonically increasing func-
tion. From formula (7b) we have that D(0) = 0 and the asymptotic expressions for small
and large elapsed times are

D(t − t0) = 〈u′2〉 (t − t0) , when (t − t0) ≪ TL , (8)

D(t − t0) = 〈u′2〉 TL = 〈u′2〉1/2 ℓL , when (t − t0) ≫ TL , (9)

where

TL =
∫

∞

0

BL(τ)

〈u′2〉 dτ and ℓL = 〈u′2〉1/2TL

are the Lagrangian integral time and space scales of turbulence, respectively. Actually,
as mentioned in the Introduction, the Eulerian approach to diffusion corresponds to the
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assumption of the equilibrium of the turbulent diffusion coefficient and to the proportion-
ality of the Lagrangian and Eulerian integral lengthscales ℓL = constL.

It is worth noting that Taylor formula (4) is valid only if the initial coordinate of
particles, at the initial moment, is the same in all the realizations, then also (8-9) are valid
only in this case. Below we discuss a misunderstanding connected with this constraint. In
fact, any attempt to apply (9) together with (6) to situations where the initial position of
particles is random (as for product particles in premixed turbulent flame) yields erroneous
conclusions.

Let c(x, t) be the concentration field, in the case when each particle contains a unit
amount of diffusing matter with an impulsive source c(x0, t0) = δ(x − x0), the average
concentration is described by the expression C(x, t) =

∫

PL(x; t|x0, t0)δ(x − x0)dx0, i.e.
formula (5) is the Green function of the equation

∂C

∂t
= Dt(t − t0)

∂2C

∂x2
. (10)

When the mean concentration, in a fixed initial moment t = t0, is distributed and known
C(x, t0) = S(x0), then the solution of Eq. (10) in terms of the Green function is

C(x, t) =
∫

+∞

−∞

PL(x; t|x0, t0)S(x0) dx0 . (11)

We remind that, given an instant t = t∗, the Lagrangian PDF PL(x; t∗|x0, t0) contains
kinematical prehistory of turbulence during the temporal interval t0 < t < t∗ and, obvi-
ously, it does not depend on kinematical prehistory due to moments previous than t0. So,
for the validity of Eqs. (10) and (11), the initial condition C(x, t0) = S(x0) obligatory
must not be yielded by kinematics in temporal interval previous than t0.

The main misunderstanding is connected with ignoring this fact. A mistake is that if
the solution to (10) in some intermediate instant, say t = t∗ > t0, is considered as an initial
condition then the diffusion coefficient in (10) is changed in Dt(t− t∗), i.e. Dt(t = t∗) = 0.
But it is not like this, if this intermediate solution C(x, t∗) = S(x∗) is used as initial
condition it is controlled also by the turbulence kinematics in t0 < t < t∗. For this
reason the correct diffusion coefficient in Eq. (10) is still Dt(t− t0) rather than Dt(t− t∗).
Only in this case the descriptions of the diffusion with initial data C(x, t0) = S(x0) and
C(x, t∗) = S(x∗) are identical for t > t∗. A simple example illustrates this statement.

Let us consider the initial condition C(x, t0) = S0δ(x − x0), where S0 is the strength
of the impulsive source. If the strength depends on time S = S(t), with S(t0) = S0, the
mean concentration is given by the expression

C(x, t) =
∫ t

0

∫

+∞

−∞

PL(x; t|x0, t0)S(x0, t0) dx0dt0 .

Assume that S(t) = S0 + (1 − S0)H(t − t∗), where H is the Heaviside function so that
H(α) = 0 when α < 0 and H(α) = 1 when α > 0. In the limit S0 → 0 we have that
C(x, t) = 0 when t < t∗ and C(x, t) > 0 when t > t∗, i.e. the initial condition of the
mean concentration is nonzero only at t = t∗, namely when the diffusive concentration
appears in the turbulent medium, and it is C(x, t∗) = PL(x, t∗). Nevertheless the diffusion
coefficient for fluid particles in the moment t = t∗ is Dt(t

∗ − t0) > 0.
In the context of the Lagrangian formulation of the turbulent diffusion problem with

known initial data C(x, t0) = S(x0), in the general case we cannot predict C(x, t > t0).
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Only in the case of a deterministic initial condition, i.e. the identity of initial distributions
in all realizations Cn(x, t0) = S(x), where n stands for the number of the realization,
(definitely, in this case there is no prehistory with respect to t0 in the Lagrangian process of
diffusion) and C(x, t) is described by (10) with Dt(t−t0). In the case of non deterministic
initial data (with known PDF P (x, t0) that yields initial mean distribution C(x, t0) =
S(x0)) we must additionally define if this initial condition is connected with previous
prehistory or no: If “no” then the diffusion coefficient is Dt(t − t0); if “yes” , i.e. the
initial profile is formed by the prehistory, in simple cases we can resolve the problem using
the idea of the image source. If, for example, the PDF is unimodal and C(x, t0) = S(x0)
is the Gaussian function with known dispersion σ2(t0), this initial data is the result of
diffusion from the image source in previous moment t00 < t0 with variance σ2(t00). We
can find the moment t00 from the Taylor equation (BL(t) being supposed to be known)
and hence the diffusion coefficient is equal to Dt(t − t00) so that Dt(t0 − t00) > 0. In the
most general case, the number of such image source could be large or even infinite so,
strictly speaking, large or infinite number of diffusion equations with different diffusion
coefficients describe turbulent diffusion.

In chemically reacting system the concentration of liquid particles changes. In premixed
combustion with the flamelet combustion mechanism, chemical transformation takes place
on self traversing random surface (flamelet sheet). So in the flame it takes place a ran-
dom stepwise instantaneous (described by the Heaviside function) change of the progress
variable c (a generalized concentration) from c = 0 in reactants to c = 1 in products.
The application of the Taylor theory for description of turbulent diffusion of the progress
variable to this situation would be erroneous because the Taylor theory assumes, as we
pointed out above, that the particle coordinate in the initial moment must be the same
in all realizations. The problem of turbulent diffusion in the premixed flame with random
generation of products, both in space and time, is mathematically addressed in the next
section.

2.2. Turbulent transport equation for reactive mixture

Let c(x, t) be the instantaneous random concentration field. Following the probability
theory, the “Eulerian” mean concentration, in the point x at time t, is determined by

C(x, t) =
∫

c Pc(c; t|x) dc , (12)

where Pc(c; t|x) is the PDF to have the concentration value c at the time t, in the fixed
point x. The quantity C(x, t) is the average of the amount of material brought in (x, t)
by all particles of the mixture, without any selection on their initial conditions. Then,
in other words, the mean concentration field C(x, t) is the Eulerian measure that results
from the amount of material Lagrangianly transported by mixture particles.

Since the system considered can be described by the joint stochastic process (x, c),
in analogy with the description of the joint stochastic process (x, v), where v is the La-
grangian velocity, in the case of constant average density, the following integral relation
can be derived by the Novikov theorem [11, 12]

Pc(c; t|x) =
∫

P (c, x; t|x0, t0) dx0 . (13)

Using (13), definition (12) becomes

C(x, t) =
∫ ∫

c P (c, x; t|x0, t0) dx0dc . (14)
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In the most general case with statistical dependence between chemistry and particle
kinematics, the joint (x, c) Lagrangian PDF P turns out to be

P (c, x; t|x0, t0) = f(c; t|x, x0, t0)PL(x; t|x0, t0) ,

where f(c; t|x, x0, t0) is the Lagrangian PDF of concentration given by particles with initial
condition (x0, t0) and PL(x; t|x0, t0) is the transitional PDF of particles from (x0, t0) to
(x, t). In this case, formula (14) becomes

C(x, t) =
∫

{
∫

c f(c; t|x, x0, t0) dc
}

PL(x; t|x0, t0) dx0 ,

where the term in brackets can be recognized as the Lagrangian average concentration
due to the particles started in (x0, t0), and, hereinafter, noted by

c(t|x, x0, t0) =
∫

c f(c; t|x, x0, t0) dc . (15)

Finally, the “Eulerian” ensemble averaged concentration C(x, t) can be re-written in the
form

C(x, t) =
∫

c(t|x, x0, t0) PL(x; t|x0, t0) dx0 . (16)

When PL(x; t|x0, t0) is Gaussian, the evolution equation turns out to be Eq. (6) where
the nonequilibrium turbulent diffusion coefficient Dt, as in (7b), is expressed in terms of
the Lagrangian autocorrelation function BL(t− t0), in accordance with the Taylor theory
[8, 1].

Multiplying each side in (6) by c(t|x, x0) and integrating over dx0, the following trans-
port equation for reactive mixture is obtained

∂C

∂t
= Dt(t− t0)

∂2C

∂x2
+

∫

{[

∂c

∂t
− Dt(t − t0)

∂2c

∂x2

]

PL − 2 Dt(t − t0)
∂c

∂x

∂PL

∂x

}

dx0 , (17)

where the integral term represents in general form the source expressed by Lagrangian
functions (in contrast to usual representation with Eulerian functions, see e.g. [13]).

In the special case with statistical independence between chemistry and particle kine-
matics, the joint (x, c) Lagrangian PDF P turns out to be

P (c, x; t|x0, t0) = f(c; t|x0, t0)PL(x; t|x0, t0) ,

and the mean concentration field can be re-written as

C(x, t) =
∫

c(t|x0, t0) PL(x; t|x0, t0) dx0 , (18)

hence the transport equation is

∂C(x, t)

∂t
= Dt(t − t0)

∂2C(x, t)

∂x2
+

∫

∂c

∂t
PL(x; t|x0) dx0 . (19)

We here emphasize again that Eq. (7b) is valid only if the initial coordinates of parti-
cles, at the initial moment t = t0, are the same in all realizations. In fact, any attempt
to apply Eqs. (7b) to situations where the initial position of particles is random yields
erroneous conclusions, as illustrated by the following example.

Assume that C(x, t0) = 0 at t ≤ t∗ and chemical transformation takes place only when
t ≥ t∗. In this case we can shift the initial condition to the moment t = t∗ (C(x0, t) = 0),
but it does not mean that the turbulent diffusion coefficient in Eq. (17) becomes Dt(t−t∗).
It remains Dt(t− t0), i.e. at the initial moment of the chemical transformation t = t∗ the
diffusion coefficient for products is Dt > 0.
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2.3. Application to the turbulent premixed combustion

Let c be the progress variable (c = 0 in reactants and c = 1 in combustion products).
Assume that at the initial moment t = t0 we have the stepwise distribution: c = 0 at x > 0
(reactants) and c = 1 at x < 0 (products). At t > t0 the average turbulent flame travels
from left to right. In the case of the flamelet combustion mechanism, it is assumed that
the chemical transformation takes place in a wrinkled self-moving random surface with
speed SL, that is equal to the velocity of the normal laminar flame. When this surface
crosses a fluid particle, an instantaneous variation of the progress variable from c = 0
to c = 1 for such particle occurs. Let t′ be the random time when this transformation
occurs, than c = 0, when t < t′, and c = 1, when t ≥ t′.

In this case the Lagrangian average concentration c can be determined as the sum of
concentrations c = 1 weighted by the PDF of the random reaction activation time

c(t|x, x0, t0) =
∑

1 · Ψ(t′|x, x0, t0) , (20)

and in integral form

c(t|x, x0, t0) =
∫ t

t0
Ψ(t′|x, x0, t0) dt′ , (21)

where Ψ is the PDF of t′. In this framework, the Lagrangian PDF of c, i.e. f(c; t|x, x0, t0),
is a bimodal function of the type f(c; t|x, x0, t0) = c δ(1−c)+(1−c) δ(c), where c is given
in (21).

The average chemical source term W (x, t) is expressed by the integral in (17) and,
noting that ∂c(t|x, x0, t0)/∂t = Ψ(t|x, x0, t0), it is determined as

W (x, t) =
∫

{[

Ψ(t|x, x0, t0) − Dt(t − t0)
∂2

∂x2

∫ t

t0
Ψ(t′|x, x0, t0)dt′

]

PL

− 2Dt(t − t0)
∂

∂x

∫ t

t0
Ψ(t′|x, x0, t0)dt′

∂PL

∂x

}

dx0 , (22)

and the speed of the flame Ut is determined by Ut(t) =
∫

+∞

−∞
W (x, t)dx.

The consequence of this process is that, at sufficiently large time t ≫ TL, the turbu-
lent diffusion coefficient, in agreement with (9), is practically constant Dt ≃ 〈u′2〉TL =
〈u′2〉1/2ℓL, i.e. it is the same as in nonreacting systems at large elapsed time of diffusion.
With other words, the instantaneous random appearing of products with c = 1 in the
flame does not influence the transfer process, i.e. conclusions about a zero initial diffu-
sivity of volume with c = 1, which is based on erroneous application of the Taylor theory
to product particles, are not theoretically justified.

In the case of strong turbulence with 〈u′2〉1/2 ≫ SL, the PDF of the flamelet sheet
and hence the chemical source can be assumed Gaussian W = −Ut(t) exp(−0.5(x −
x0)

2/σ2
f)/(2πσ2

f )
1/2, where σ2

f = (x2 − x2
0(t))

1/2 and x0(t) =
∫ t
0
Ut(τ)dτ are the disper-

sion and the coordinate of the mathematical expectation of the sheet. These expressions
are valid for times t ≪ T , where T is a time-scale to be determined, when the influence
of flamelet traveling with small speed SL on the large-scale sheet wrinkles is negligible in
comparison with the effect of the large velocity fluctuations connected with the energy
eddies. In order to estimate T , we assume that the influence of SL on the PDF takes
place when the transfer due to the velocity fluctuations and the flamelet traveling with
speed SL are of the same order, (2〈u′2〉/TLT )1/2 ≃ SLT , i.e. T ≃ 2TL(〈u′2〉1/2/SL)2 ≫ TL.
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Now we show that for times t ≪ T the chemical transformation does not influence the
turbulent flame width δt ≃ σf .

The moment analysis gives

dσ2
f

dt
= 2Dt(t − t0) +

∫

+∞

−∞

x2
∂W

∂x
dx − 2U2

t (t) t , (23)

and, since
∫

x2∂W/∂x dx = 2U2
t (t) t, it follows that the flame width is independent of

the chemical source and driven only by the passive dispersion. At the same time the
flame speed Ut(t) depends on both turbulence and chemistry because of the interaction
of the traveling flamelet with the small-scale wrinkles, which are controlled by small
eddies with 〈u′2

se〉1/2 ≤ SL. We notice that at times TL ≪ t ≪ 2TL(〈u′2〉1/2/SL)2, when
small-scale wrinkles are already in statistical equilibrium and large-scale ones are still in
nonequilibrium, flames have quasi constant speed and increasing width. A theoretical
analysis of this situation is given in [7], and a comprehensive review of experimental data
referring to such flames is presented in [14].

At t ≫ 2T (〈u′2〉1/2/SL)2 the turbulent flame reaches the steady state regime. We will
see in the next section that, in the flamelet combustion mechanism, the speed of the
steady state flame Uss

t is mainly controlled by the velocity of the diffusive front Uf . In
order to perform the steady state analysis, an hyperbolic diffusion equation based on
hydrodynamics is derived.

3. Turbulent Diffusion with Finite Front Velocity and Premixed

Combustion

3.1. An hyperbolic equation for turbulent transport

Diffusion with a finite front velocity is generally obtained in literature by the telegraph
equation, which usually is derived on the basis of random walk arguments [1]. Here,
following [6, 7], an hyperbolic equation with time dependent coefficient is derived on the
basis of the unclosed equations for the average concentration and the turbulent flux of
concentration fluctuation.

Consider the Navier-Stokes equation for the velocity field u(x, t) and the scalar con-
servation equation for the concentration field c(x, t)

∂ui

∂t
+ uα

∂ui

∂xα
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xα∂xα
, (24)

∂c

∂t
+ uα

∂c

∂xα
= 0 , (25)

where ρ is the fluid density, p(x, t) the pressure field and ν the kinematic viscosity, the
molecular viscosity is neglected and the summation rule on the repeated Greek indexes is
used.

Then, multiplying (25) by ui and (24) by c, using the standard compositions rule,
instantaneous = average + fluctuation, and stated Ui = 0, give respectively

〈

u′

i

∂c′

∂t

〉

+ 〈u′

iuα〉
∂C

∂xα
+

〈

u′

iuα
∂c′

∂xα

〉

= 0 , (26)

〈

c′
∂u′

i

∂t

〉

+

〈

c′u′

α

∂u′

i

∂xα

〉

= −1

ρ

〈

c′
∂p′

∂xi

〉

+ ν

〈

c′
∂2u′

i

∂xα∂xα

〉

. (27)
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Hence, averaging (25) and summing (26) and (27), the following system of equations is
obtained

∂C

∂t
+

∂〈u′

αc′〉
∂xα

= 0 , (28)

∂〈u′

ic
′〉

∂t
+ 〈u′

iu
′

α〉
∂C

∂xα

= −∂〈u′

αu′

ic
′〉

∂xα

− 1

ρ

〈

c′
∂p′

∂xi

〉

+ ν

〈

c′
∂2u′

i

∂xα∂xα

〉

. (29)

System (28-29) requires a closure. With the hypothesis that turbulent diffusion is con-
trolled in general by the Lagrangian velocity fluctuation autocorrelation function BL(t),
for infinite Reynolds number, the RHS of (29) can be assumed to be independent of ν and
to be dependent on 〈u′

ic
′〉, which includes the dependence on (x, t), and on a functional of

BL(t) which includes the parameter TL, i.e. ϕ = ϕ(BL(t), TL) = ϕ(t, TL). This assump-
tion can be applied also to the addendum with the pressure fluctuation p′ because, from
dimensional arguments, it can be expressed in terms of the velocity fluctuation. Finally,
invoking the Π–Theorem [15]

∂〈u′

αu′

ic
′〉

∂xα
+

1

ρ

〈

c′
∂p′

∂xi

〉

− ν

〈

c′
∂2u′

i

∂xα∂xα

〉

=
ϕ(t, TL)

TL
〈u′

ic
′〉 . (30)

Closure (30) is different from that in [6, 7]. In fact, the present includes the time de-
pendence that is fundamental to describe all dispersion regimes. Finally, the transport
equation turns out to be

∂2C

∂t2
+

ϕ(t, TL)

TL

∂C

∂t
=

∂〈u′

iu
′

α〉
∂xi

∂C

∂xα
+ 〈u′

αu′

i〉
∂2C

∂xi∂xα
. (31)

From homogeneity and isotropy 〈u′

iu
′

α〉 = 〈u′2〉 δiα and equation (32) becomes

∂2C

∂t2
+

ϕ(t, TL)

TL

∂C

∂t
= 〈u′2〉∂

2C

∂x2
, (32)

where x stands for each Cartesian component xi.
Analysis of the characteristics of (32) shows that the front velocity Uf , for an arbitrary

ϕ(t, TL), is

|Uf | =

∣

∣

∣

∣

∣

dx

dt

∣

∣

∣

∣

∣

= 〈u′2〉1/2 . (33)

The Lagrangian characteristics of the transport process (32) can be derived. In fact,
for a δ-function initial condition the particle displacement x2 is x2 =

∫

x2 C(x, t) dx, and
then multiplying (32) by x2 and integrating in dx, using definitions (7), gives

d2x2

dt2
+

ϕ(t, TL)

TL

dx2

dt
= 2〈u′2〉 . (34)

Imposing the agreement with the Taylor statements on dispersion (7), equation (34) yields
the following determination of ϕ(t, TL)

ϕ(t, TL) = TL
〈u′2〉 − BL(t)
∫ t
0
BL(τ)dτ

. (35)
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This means that, with ϕ(t, TL) defined as in (35), Eqs. (32) and (34) hold at all times
and they meet the Taylor statements on turbulent dispersion for an arbitrary Lagrangian
velocity fluctuation autocorrelation function BL(t).

Unlike the present analysis, the one developed in [6, 7] holds only for very large elapsed
times because ϕ is taken constant. In fact, when t → ∞, BL → 0 and

∫ t
0 BL(τ)dτ → 〈u′2〉TL,

from (35) follows that ϕ(t, TL) → 1. However, when an exponential autocorrelation func-
tion is chosen, i.e. BL(t) = 〈u′2〉 exp(−t/TL), from (35) it follows that ϕ(t, TL) = 1 for all
times and equation (32) reduces to

TL
∂2C

∂t2
+

∂C

∂t
= 〈u′2〉TL

∂2C

∂x2
, (36)

that is the telegraph equation, mathematically an hyperbolic equation with constant
coefficient.

Equation (36) has a number of good properties for turbulent transport modelling: i) it
is an Eulerian-type equation with constant coefficient, ii) it generates a particle diffusion
process in agreement with Taylor statements, iii) it is consistent with an exponential La-
grangian velocity fluctuation autocorrelation function, iv) it describes a diffusion process
with finite velocity front.

3.2. A relationship between the velocities of turbulent diffusion front and

turbulent premixed flame in the flamelet combustion mechanism

In order to analyze premixed combustion, we equip the hyperbolic transport equation
(36) with an average chemical source term W (x, t) as it follows

TL
∂2C

∂t2
+

∂C

∂t
= 〈u′2〉TL

∂2C

∂x2
+ W (x, t) . (37)

Assume that at the initial moment t = t0 we have the stepwise distribution: c = 0 at
x > 0 and c = 1 at x < 0.

In the case of dispersion without combustion (W = 0), the leading points of the mixing
boundary layer are passive and they move with the front velocity Uf = 〈u′2〉1/2, while when
a flame exists they travel with constant speed SL in respect of the reactants, then, if the
flamelet combustion mechanism with constant flamelet speed SL is considered, the velocity
of the front edge of the turbulent flame turns out to be Ufe = Uf + SL = 〈u′2〉1/2 + SL =
const.

Moreover, the turbulent flame velocity (volume consumption speed) Ut depends on
time as Ut(t) = SL A(t)/A0, where A(t)/A0 is the average dimensionless flame sheet area.
At the initial time the dimensionless flame sheet is A(t0)/A0 = 1, so that Ut(t0) = SL, but
the wrinkling of the sheet and the increasing of flame width causes the growing in time of
the ratio A(t)/A0 and the corresponding increasing of the Ut(t) up to reach the asymptotic
steady state value Uss

t . Since in the stationary traveling flame all the iso-surfaces has the
same speed, the value of the steady state flame velocity is Uss

t = Ufe = 〈u′2〉1/2 + SL.
In order to describe this qualitative behavior of the flame speed, we introduce the

source in equation (37) as the sum of two contributions: W (x, t) = W1(x, t) + W2(x, t),
where the first term controls the consumption rate, i.e.

∫

+∞

−∞
W1(x, t) dx = Ut(t), while the

second term yields the front edge speed Ufe = 〈u′2〉1/2 + SL = const but it does not give
contribution to the consumption rate, i.e.

∫

+∞

−∞
W2(x, t) dx = 0. In order to have from



V.L. Zimont and G. Pagnini 11

characteristics analysis the front edge speed of the flame equal to 〈u′2〉1/2 + SL, equation
(37) becomes

TL
∂2C

∂t2
+

∂C

∂t
=

(

〈u′2〉1/2 + SL

)2

TL
∂2C

∂x2
+ W1(x, t) , (38)

and W2 is uniquely determined as W2 = (2〈u′2〉1/2 + SL) SL TL ∂2C/∂x2.
In the case of strong turbulence (〈u′2〉1/2 ≫ SL), the speed of the front edge of the

flame is practically equal to the velocity of the diffusion front, i.e. Uss
t

∼= Uf = 〈u′2〉1/2,
that corresponds and refines the classical intuitive estimation Uss

t ∼ 〈u′2〉1/2 [9, 10], and
the flame speed does not depend on chemistry. At the same time, the width of the
flame, adapted to this speed, obviously depends on SL (the smaller SL the larger δt

and vice versa). In the case 〈u′2〉1/2 ≃ SL, the flame speed is Uss
t = 〈u′2〉1/2 + SL and

then Uss
t > Uf , i.e. the flame velocity is larger than the speed of the diffusion front.

The opposite situation, when Uss
t < Uf = 〈u′2〉1/2, is possible in the case of distributed

combustion where coupled transfer and chemical processes yield a turbulent flame with a
speed that is insufficient to reach the faster traveling diffusion front, so the diffusion front
does not influence the combustion. In this case both the flame speed and width depend
on turbulence and chemistry.

4. Summary and Conclusions

1. In this paper we have analyzed Lagrangian properties of turbulent diffusion that, even
if they are ignored in many engineering works devoted to heat and mass transfer, are
important in several fields, in particular, in the theory of turbulent combustion. Our
analysis refers to the turbulent premixed flame where (i) the transient behaviour of La-
grangian turbulent diffusion coefficient is relevant for initial forming of developed flame
(this is important, in particular, for accurate modelling of initial stage of combustion in
the SI engine) and (ii) the existence of the traveling front of turbulent diffusion (connected
with finite turbulent velocity of Lagrangian fluid particles) that plays decisive role on the
speed of the steady state flame in the flamelet combustion mechanism.

2. We have considered one-dimensional situations in homogeneous, isotropic and sta-
tionary turbulence with constant density. After a short remind of the derivation of the
main result of the Taylor theory of Lagrangian diffusion, to point out the conditions when
it is valid, we have stressed the fact that the classical Taylor expression describing the vari-
ance of diffusing particles σ2 in terms of the Lagrangian autocorrelation function BL(t),
and corresponding to a turbulent diffusion coefficient that increases in time from zero to
a constant value, is valid only when the initial position of the particle is the same in all
realizations. Then, the estimation of diffusivity, using the Taylor theory, of the products
of combustion (or of the progress variable), that randomly appear in the turbulent pre-
mixed flame, is not theoretically justified and any claim on zero diffusivity of products in
the moment of their appearance is erroneous.

3. In the context of the parabolic balance equation in terms of the progress variable,
we have proved that the Lagrangian turbulent diffusion coefficient does not depend on
chemical transformation and it is identical to the case of nonreacting systems. Though
this result is valid for arbitrary chemical source term, that here differently from other
papers is expressed in terms of Lagrangian functions, we have attracted special attention
to a traveling premixed flame with flamelet combustion mechanism and stepwise initial
condition. We have showed that instantaneous transformation of reactants in products,
which takes place in strongly wrinkled flamelet sheet, does not influence the turbulent
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diffusion coefficient. In the case of strong turbulence 〈u′2〉1/2 ≫ SL we have addition-
ally proved that at times t ≪ TL(〈u′2〉1/2/SL)2 the increasing widths of the premixed
flame and mixing layer (for initial stepwise profile) are practically the same, while at
t > TL(〈u′2〉1/2/SL)2 the flame width is smaller and becomes asymptotically constant.
The velocity of this asymptotic premixed flame strongly depends on the speed of the
front of turbulent diffusion, which is a Lagrangian characteristic of turbulent transfer.

5. An hyperbolic equation of turbulent diffusion that follows from unclosed moment
equation, where solely the Lagrangian autocorrelation function BL(t) is assumed to be
known, has been derived. More, we have showed that (i) in the case of an exponential
BL(t) the hyperbolic equation has known constant coefficients, which are expressed in
terms of 〈u′2〉1/2 and TL and it satisfies exactly the Taylor theory, and (ii) for an arbitrary
BL(t) the hyperbolic equation exactly satisfies the Taylor theory with time-dependent
coefficients that are expressed in terms of the autocorrelation function BL(t). In all cases,
the speed of the diffusion front is Uf = 〈u′2〉1/2.

6. We have shown that, in the premixed flame asymptotic steady state regime, the
flame speed is Uss

t
∼= Uf = 〈u′2〉1/2, which at strong turbulence 〈u′2〉1/2 ≫ SL corresponds

and refines the classical intuitive estimation Uss
t ∼ 〈u′2〉1/2 [9, 10]. At the same time it is

possible, in the case of distributed combustion mechanism, that Uss
t < Uf and the more

fast traveling diffusion front does not influence, at large times, the speed of the turbulent
premixed flame.
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