
Lagrangian Formulation of Turbulent Premixed Combustion

Gianni Pagnini and Ernesto Bonomi

CRS4, Polaris Building 1, 09010 Pula, Italy
(Received 4 November 2010; published 21 July 2011)

The Lagrangian point of view is adopted to study turbulent premixed combustion. The evolution of the

volume fraction of combustion products is established by the Reynolds transport theorem. It emerges that

the burned-mass fraction is led by the turbulent particle motion, by the flame front velocity, and by the mean

curvature of the flame front. A physical requirement connecting particle turbulent dispersion and flame front

velocity is obtained from equating the expansion rates of the flame front progression and of the unburned

particles spread. The resulting description compares favorably with experimental data. In the case of a zero-

curvature flame, with a non-Markovian parabolic model for turbulent dispersion, the formulation yields the

Zimont equation extended to all elapsed times and fully determined by turbulence characteristics. The exact

solution of the extended Zimont equation is calculated and analyzed to bring out different regimes.
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Turbulent premixed combustion is a challenging scien-
tific field involving nonequilibrium phenomena and play-
ing the main role in important industrial issues such as
energy production and engine design.

A Lagrangian point of view is here adopted, leading to a
description of turbulent premixed combustion which takes
into account, for all elapsed times, the turbulent dispersion,
the volume consumption rate of reactants, and the flame
mean curvature. The proposed approach generalizes and
unifies classical literature approaches that are based on the
so-called level-set method [1] or are based on the Zimont
balance equation, originally hinted at by Prudnikov [3],
also known as Turbulent Flame Closure model [2].
Moreover, the proposed formulation has the striking prop-
erty to be compatible with every type of geometry and flow
in an easier and more versatile way than previous ap-
proaches, and it emerges to be easily modifiable to include
more detailed and correct physics. It is worth recalling that
the Zimont equation was introduced on the basis of experi-
mental observations and that a great effort has been under-
taken to give a deeper theoretical foundation to it [2,4–6].
The present Lagrangian formulation constitutes a reliable
theoretical support for the Zimont combustion model.

The process of turbulent premixed combustion is mainly
characterized by flame propagation towards the unburned
region and turbulent dispersion of the resultant product
particles. The combustion process is described by a single
dimensionless scalar observable, denoted as average
progress variable, 0 � cðx; tÞ � 1, and representing the
burned-mass fraction, i.e., the fraction of burned particles
which are located in x at time t. The value cðx; tÞ ¼ 1
describes the presence of only products and the value
cðx; tÞ ¼ 0 describes the presence of only reactants. To
avoid unnecessary mathematical difficulties, we consider
a constant-density mixture and a zero-mean turbulent ve-
locity field. Molecular diffusion is also neglected.

In this Letter, the fresh mixture is intended to be a popu-
lation of particles in turbulent motion that, in a statistical
sense, change from reactant to product when their average
positions are hit by the flame. Let�ðtÞ be the portion of space
surrounded by the flame surface; then those particles with
average position hxi 2 �ðtÞ are marked as burned particles.
The occurrence in x at time t of a particle transit is described
by a probability density function (PDF). Let pðx; tjx0Þ be the
PDF associated with a particle displacement where x0 is the
initial condition of a Lagrangian trajectory and, without loss
of generality, let t ¼ 0 be the ignition instant. With the
assumption that particle trajectories are not affected by the
chemical transformation, the average progress variable
cðx; tÞ turns out to be defined as the superposition of PDFs
of burned particles, i.e., those pðx; tjx0Þ with hxi 2 �ðtÞ.
For a zero-average velocity field, the particle average position
is hxi ¼ x0 and then

cðx; tÞ ¼
Z
�ðtÞ

pðx; tjx0Þdx0: (1)

The evolution law for the progress variable cðx; tÞ is obtained
applying Reynolds transport theorem to (1) which gives

@c

@t
¼

Z
�ðtÞ

@p

@t
dx0 þ

Z
�ðtÞ

rx0
� ½uðx0; tÞpðx; tjx0Þ�dx0;

(2)

whererx0
is the gradient with respect to x0 and uðx; tÞ is the

expansion velocity field of �ðtÞ.
Let the turbulent dispersion be represented by the gen-

eral evolution equation

@p

@t
¼ Ex½p�; pðx; 0jx0Þ ¼ �ðx� x0Þ; (3)

where the spatial operator Ex½�� includes the particle
displacement statistics such as the variance �2ðtÞ ¼ hkx�
x0k2i=3.
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Equation (2) is also governed by the volumetric expan-
sion of �ðtÞ. This expansion is connected with the
consumption rate that in a general form is set to be

u ðx; tÞ ¼ Uð�; tÞn̂; n̂ ¼ � rc
krck ; (4)

where �ðx; tÞ ¼ r � n̂=2 denotes the local mean curvature.
Since molecular processes are neglected, the initial burn-
ing speed must be zero, i.e., Uð�; 0Þ ¼ 0. From (4) the
location of the flame surface follows to be

L fðtÞ ¼ L0 þ
Z t

0
uðLf; �Þd�: (5)

Finally, inserting (3) and (4) in (2) gives

@c

@t
¼ Ex½c� þ

Z
�ðtÞ

u � rx0
pdx0 þ

Z
�ðtÞ

p

�
@U
@�

rx0
� � n̂

þ 2Uð�; tÞ�ðx0; tÞ
�
dx0: (6)

The evolution of the progress variable is then led by three
factors: turbulent motion, displacement speed of the con-
tours of cðx; tÞ and their mean curvature. It is worth re-
marking that (6) cannot be reduced to the most widely used
front propagation equations [7], and, since (6) follows from
the exact Lagrangian definition (1), none of them is physi-
cally correct to model turbulent premixed combustion.

When particle motion is neglected, products and
reactants turns out to be frozen, @p=@t ¼ 0, so that p !
�ðx� x0Þ and

R
�ðtÞ rx0

� ½uðx0; tÞp�dx0 ¼ �u � rc. Here
the identityrp ¼ �rx0

p has been used. In this limit case,

using (4), Eq. (2) reduces to

@c

@t
¼Uð�;tÞkrck; cðx; tÞ¼

�
1; if x2�ðtÞ;
0; otherwise;

(7)

the celebrated Hamilton-Jacobi equation stated by Sethian
[1] to track the flame front surrounding the burned volume
�ðtÞ, which is related to the G-equation [8] and to the
Kardar-Parisi-Zhang equation [9]. Equation (7) can be
now interpreted as a consequence of Reynolds transport
theorem.

When the normal n̂ to the contours of the progress variable
is assumed constant, then the mean curvature � is zero.
Assuming an homogeneous, isotropic and stationary turbu-
lence, for the Lagrangian PDF it holds rp ¼ �rx0

p and

setting Uð0; tÞ ¼ UðtÞ formula (6) turns out to be

@c

@t
¼ Ex½c� þUðtÞkrck: (8)

It must be observed that in (8) the turbulent dispersion
and the flame expansion enter in the progress variable
evolution with the particle displacement variance �2ðtÞ
andUðtÞ, that are so far independent. However, in a proper
combustion model they have to be mutually related since,
when molecular processes are neglected, the flame front
has to be solely fueled and carried by the turbulent dynam-
ics of the reacting environment. To formulate a correspon-
dence between particle spread and flame progression,

the expansion rate of the quadratic mean of particle dis-
placement rð�; tÞ ¼ �ðtþ �Þ=�ðtÞ is taken equal to the
expansion rate of the flame front progression �fðtÞ ¼
LfðtÞ �L0. In the mechanism here proposed, while the

combustion evolves moving along the outward flame front
normal, see Fig. 1, the expansion of � is statistically
related to the random oscillation of a particle moving
forward and backward around its mean position. As a
consequence, a half time step � is necessary to the
forward-moving flame front to have the same expansion
rate than an unburned particle oscillating around its mean
position: rð�; tÞ ¼ �fðtþ �=2Þ=�fðtÞ. Finally, noting that

rð0; tÞ ¼ 1 and performing the limit � ! 0, the joined
process satisfies

1

LfðtÞ �L0

dLf

dt
¼ 2

�ðtÞ
d�

dt
¼ 2

@r

@�

���������¼0
: (9)

Let us introduce the function

D ðtÞ ¼ 1

2

d�2

dt
¼

Z t

0
BLð�Þd�; (10)

where BLðtÞ is the Lagrangian velocity autocorrelation
function. It is worth remarking that definition (10) is
in agreement with the exact Taylor formula �2ðtÞ ¼
2
R
t
0ðt� �ÞBLð�Þd� that includes all turbulent dispersion

regimes from the ballistic to the diffusive one passing
through the inertial range. Using definitions (5) and (10)
identity (9) can be written in terms ofU andD and yieldsR

t
0 Uð�Þd�
UðtÞ

DðtÞR
t
0 Dð�Þd� ¼ 1: (11)

It follows that
R
t
0½DðtÞUð�Þ �UðtÞDð�Þ�d� ¼ 0 for any

t � 0. From the monotonicity of bothU andD, since they
are non-negative functions and Uð0Þ ¼ Dð0Þ ¼ 0, the
following equality holds

FIG. 1. Illustration of the forward motion of the flame front
from the initial position L0 to LfðtÞ and the expansion of the

particle quadratic mean � after a forward plus backward random
walk around the average position hxi ¼ x0.
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Dð�Þ
Uð�Þ ¼ DðtÞ

UðtÞ ; 0 � � � t; (12)

so that, within the integration interval of �, the ratio
Dð�Þ=Uð�Þ must be constant. Moreover, for t ! 1
both DðtÞ and UðtÞ are bounded, Dð1Þ ¼ Deq and

Uð1Þ ¼ Ueq; therefore, such a constant is equal to

DðtÞ
UðtÞ ¼ Deq

Ueq

¼ �; t � 0: (13)

Identity (13) states that, by using definition (10), the whole
evolution of the combustion process is solely established
by �2ðtÞ, and it constitutes a new result in literature [7].
Moreover, it determines not only the relation between the
combustion drift and the background turbulent dispersion,
but also the temporal evolution of the flame front location
LfðtÞ as it follows

L fðtÞ ¼ L0 þ �2ðtÞ
2�

: (14)

A similar result was already sketched by Biagioli [10] in
the study of strongly swirled flows, but valid only for
asymptotic long times. To validate the goodness of the
physical argument that brought to expression (14), an
experimental result discussed in the literature is used
where � and Lf were simultaneously measured. The

data come from Fig. 21 in Ref. [4] and they are attributed
to unavailable measurements [11]. In the experimental
setup, the gas mixture flows at the steady velocity V ¼
26:0 ms�1 and the data acquisition was performed at fixed
distances x½mm� from an origin. The measurement loca-
tions x½mm� have been converted in elapsed times t½s� by
t ¼ x=V and Lf and � have been considered as measured

in a reference frame in translation with the flow. Figure 2
shows the fit between the measurements of � and Taylor
formula, where the exponential autocorrelation function
BLðtÞ ¼ hu02i expð�t=TLÞ is assumed with Deq ¼
hu02iTL ¼ 11� 103 mm2 s�1 and TL ¼ 2� 10�3 s.
Here TL ¼ hu02i�1

R
t
0 BLð�Þd� denotes the Lagrangian in-

tegral timescale. Substituting the resulting analytic �2 in
Eq. (14), the flame front positionLf is correctly predicted.

The experiment was performed twice with the same turbu-
lence characteristics but with two different equivalence
ratios F (that is the ratio of the fuel-to-oxidizer ratio to
the stoichiometric fuel-to-oxidizer ratio): F ¼ 0:68 and
F ¼ 0:56.

Let us consider now the simple non-Markovian parabolic
model: Ex½p� � DðtÞr2p. Equation (8) becomes the exten-
sion to all elapsed times of the familiar Zimont equation [2],
which was historically formulated in the asymptotic regime
t � TL with DðtÞ tending to Deq and UðtÞ to Ueq. A

critical review about it can be found in [4,6].
Despite the restriction � ¼ 0, other extensions of (8) to

the initial regime t < TL are currently applied in engineer-
ing applications to study transient and geometrical effects

in the developing phase of the flame [12] with practical
fallouts in the design of spark-ignition engines [13].
With � ¼ 0, the study of Zimont equation is reduced to a

one-dimensional problem along the normal direction to
the flame front. The front speed (4) becomes uðx; tÞ ¼
�UðtÞsgnð@c=@xÞ. Let the portion of space surrounded
by the flame be �ðtÞ ¼ ½LLðtÞ;LRðtÞ�, where LL and
LR are the flame front positions defined in (5) on the left
and on the right of the ignition point, respectively. Then the
exact solution is

cðx; tÞ ¼ 1

2

�
Erfc

�
x�LRðtÞffiffiffi

2
p

�ðtÞ
�
� Erfc

�
x�LLðtÞffiffiffi

2
p

�ðtÞ
��
: (15)

By setting x ¼ z� z0 and LRðtÞ ¼ zfðtÞ � z0, in the limit

z0 ! �1 the progress variable becomes cðz; tÞ ¼
Erfc½ðz� zfðtÞÞ=ð

ffiffiffi
2

p
�ðtÞÞ�=2, that is in agreement with

several experimental results [4,6]. In particular, formula
(14) can be plugged into solution (15) of the extended
Zimont equation. With this model, now fully determined
for all elapsed times by �2, it is possible to perform a
generally valid analysis on the flame enhancement and
quenching and bring out the different regimes of the com-
bustion process. The two examples of Fig. 3 display the
evolution of cðx; tÞ with the initial fully burned zone
bounded by different flame front conditions: L0 ¼ �=5
and L0 ¼ 5�. For the plots, we have set hu02i ¼ 1,
TL ¼ 1, � ¼ 0:1. Observe in Fig. 3(a) that, after the initial
ignition instant, turbulent diffusion mixes together prod-
ucts and reactants so that the progress variable takes a bell-
shape profile and in the central zone cðx; tÞ is drained by the
dispersion of the resulting product particles. If cðx; tÞ
becomes less than a threshold value, quenching can be
assumed. The larger is the ignition region the weaker is
the draining, and, as illustrated in Fig. 3(b), no-draining
occurs for an initial value L0 larger than a critical length
scale L0c. The length scale L0c can be determined by the

FIG. 2. Experimental validation of the propagation law (14).
Lines are the plots of the analytic � and the predicted flame front
positions Lf. The values � ¼ 5:1 mm and � ¼ 8:2 mm corre-

spond to two different equivalence ratios F ¼ 0:68 and
F ¼ 0:56, respectively.
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budget between the spread of the particle distribution,
driven by DðtÞ, and the expansion of �ðtÞ, driven by
UðtÞ. Introducing a pseudo diffusion coefficient for the
combustionUðtÞL0, the budget emerges to be given by the
ratioUðtÞL0=DðtÞ ¼ L0=�. It emerges from this analysis

thatL0c¼�¼Deq=Ueq¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DeqT

q
, whereT ¼Deq=U2

eq

is a determination of the characteristic reaction time. When
L0 	 �, the flame rapidly quenches after the initial igni-
tion, see Fig. 3(a); whenL0 � �, the flame is immediately
able to sustain itself, see Fig. 3(b), and the combustion
propagates. This dependence on the size of L0 is the same
as the one theoretically established for the Kolmogorov-
Petrovskii-Piskunov models [14]. In the intermediate case
L0 ’ �, when turbulence is not strong enough to drain
cðx; tÞ below the quenching threshold, cðx; tÞ, after an
initial fall, is refilled and resustained by the combustion.
This last behavior identifies the regime in which the pro-
cess is dependent on the initial condition. Actually, con-
sidering the right semiaxis on the flame front location
x ¼ LRðtÞ, the two contributions of the Erfc functions

in (15) become 1 and Erfcf ffiffiffi
2

p ½L0=�þ �=ð2�Þ�g,
respectively. Since �ðtÞ is monotonic and increasing with
�ð0Þ ¼ 0, there exist two time scales �0 and �
 defined
by �ð�0Þ ¼ L0 and �ð�
Þ ¼ 2�, respectively, which can
be estimated from the scaling laws of �2ðtÞ. For short

times, t 	 TL, when �2 ’ hu02it2, it turns out that �0 ¼
L0=hu02i1=2. After this transient regime which is dependent
on the initial condition, the process tends asymptotically to

be self-similar. The time scale �
 turns out to be �
 ¼
2ðhu02i=U2

eqÞ1=2TL, if �
 	 TL, or �
 ¼ 2�=Ueq, if �
 �
TL. This means that when t < �0 < �
 then L0=� >
�=ð2�Þ while when t > �
 then L0=� < �=ð2�Þ. So
when t < �
 the second Erfc function is strongly variable,
while when t > �
 its argument begins to grow and the Erfc
function tends rapidly to zero. Finally, when t < �
 the
average progress variable profile is not self-similar,

because each Erfc function in (15) has its own self-
similarity variable, while for t > �
 it is asymptotically
self-similar with respect to the self-similarity variable
ðx�LRðtÞÞ=�ðtÞ. Then the time scale �
 separates the
initial not self-similar transient regime from the asymptoti-
cally self-similar regime. For long elapsed times, in the
reference frame moving with the flame front, the smooth-
ing effect of the turbulence spread decreases and asymp-
totically vanishes, making the profile of cðx; tÞ steeper. The
same arguments above can be applied to the left semiaxis.
In addition, it is possible to expand the present formulation
including the advecting mean velocity by following the
same arguments formulated in [15] where Deq is changed

in an effective diffusion coefficient with a nontrivial de-
pendence on the mean velocity field. Then, by replacing (3)
and (10) with a Lagrangian dispersion model for shear or
cellular flow, the dependence of L0c on the mean velocity
may be estimated as in [16,17].
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