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ABSTRACT
Noises are usually assumed to be Gaussian so that many

existing signal processing techniques can be applied with no
worry. However, in many real world natural or man-made sys-
tems, noises are usually heavy-tailed. It is increasingly desirable
to address the problem of finding an opportune filter functionfor
a given input noise in order to generate a desired output noise.
By filtering theory, the probability density function of theoutput
noise can be expressed by the integral of the product of the den-
sity of the input noise and the filter function. Adopting Mellin
transformation rules, the Mellin transform of the unknown fil-
ter is determined by the Mellin transforms of the known density
of the input noise and the desired density for the output noise.
Finally, after the inversion, the Mellin–Barnes integral represen-
tation of the filter function is derived. The method is applied to
compute the filter function to convert a Lévy noise into a Gaus-
sian noise.

INTRODUCTION
In many real world natural or man-made systems, noises are

usually heavy-tailed [1] with lots of spikes and for this they are
difficult to be managed and should be further processed [2]. For
example, the networked induced delays in networked controlsys-
tems (NCS) are of spiky nature which hints that the generating
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dynamics should be characterized by fractional order differential
models as pointed out in [3] based on [4]. Therefore, in fractional
order control [5] and fractional order signal processing [1], it is
increasingly desirable to address the problem of finding an op-
portune filter function for an input noise of a given distribution
in order to generate an output noise of the desired distribution.
In this contribution, noises with continuos probability density
function (PDF) are taken into account. The Mellin transform
tool is considered and in particular its convolution-type integral,
where as convolution integral is intended that integral including
the product of two functions whose transform is the product of
the corresponding transformed functions. By filtering theory, the
PDF of the output noise can be expressed by the integral of the
product of the density of the input noise and the filter function.
Adopting Mellin transformation rules, the Mellin transform of
the unknown filter can be determined by the Mellin transforms
of the known density of the input noise and the desired density
for the output noise. Finally, after the inversion, the Mellin–
Barnes integral representation of the filter function is derived.
The method is applied to compute the filter function to convert a
Lévy noise into a Gaussian noise.

MELLIN CONVOLUTION FOR SIGNAL FILTERING
Mellin transform is a powerful mathematical tool that better

than other methods permits to successfully evaluate integrals [6–
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8], derive subordination formula [9, 10], naturally related to the
Mellin–Barnes integral representation of Special Functions [6,
11, 12] and then also to manage higher transcendental functions
and the well-known H-function [13–15], see Appendix.

The Mellin transform of a functionψ(x), for x > 0, is de-
fined as

ψ∗(s) =
∫ ∞

0
ψ(x)xs−1dx, s∈C, (1)

and the antitransformation formula reads

ψ(x) =
1

2π i

∫ σ+i∞

σ−i∞
ψ∗(s)x−sds, σ = Re(s) . (2)

The transformed functionψ∗(s) exists if the integral
∫ ∞

0
|ψ(x)|xs−1dx is bounded and this constraint is met in

the vertical stripa < σ = Re(s) < b, where the boundary values
a andb follow from the analytic structure ofψ(x) provided that
|ψ(x)| ≤Mx−a whenx→ 0+ and|ψ(x)| ≤Mx−b whenx→+∞.
Hereinafter, the Mellin transformation pair is denoted by

ψ(x)
M←→ ψ∗(s) . (3)

Please see specialized treatises and/or handbooks [6,11] for more
details.

Applying residue theorem to (2), the original functionψ(x)
has the following series representation

ψ(x) =
n

∑
k=1

Res
s=ξk

{ψ∗(s)} x−ξk , (4)

where Res stands for residue andξk, with k = 1, . . . ,n, are then
poles of the transformed functionψ∗(s). This means that anti-
transformation formula (2) can be re-written as

ψ(x) =
1

2π i

∫

L

ψ∗(s)x−sds, (5)

whereL is the integration path that encircles all the polesξk of
the integrandψ∗(s).

Here, it is calledconvolutionthat operator involving two
functions whose trasformation is given by the product of the
transformation of two involved functions. What concerns Mellin
transform the convolution is

ψ(x) =

∫ ∞

0
ψ1

(

x
η

)

ψ2(η)
dη
η

M←→ ψ∗1(s)ψ∗2(s) . (6)

Let pi(x,t) and po(x,t) be the PDF of the input and output
noise, respectively, wherex∈ R is the random fluctuation of the
noisy signal andt ∈R+ is an associated positive parameter as for
example the elapsed time. Then a general input noisepi can be
transformed intopo by an opportune filtering functionf through
the subordination type formula

po(x,t) =

∫ ∞

0
pi(x,τ) f (τ,t)dτ . (7)

If the statistical self-similarity for both input and output signals
is assumed, then, for the opportune choice of a scaling factor de-
pending ont, the statistical description of the signals emerges to
be scale invariant. Then, since the whole statistical information is
included inside the PDF, it means that the PDFs of the input and
output signals can be expressed in the following scale invariant
arrangement

pi(x,τ) = τ−γi ϕi

( x
τγi

)

, (8)

po(x,t) = t−γo ϕo

( x
tγo

)

, (9)

whereτγi andϕi(x/τγi ) embodied the scale factor and the scale
invariant functional form ofpi(x,τ), τγi andϕo(x/τγo) have the
same meaning forpo(x,t). Finally, formula (7) becomes

t−γoϕo

( x
tγo

)

=
∫ ∞

0
τ−γi ϕi

( x
τγi

)

f (τ,t)dτ . (10)

Formula (10) can be understood as a convolution integral (6)
after straightforward change of variable.

Consider the positive semi-axesx > 0. Applying Mellin
transform (1) to both sides of (10) gives

t−γo

∫ ∞

0
ϕo

( x
tγo

)

xs−1dx=

∫ ∞

0
τ−γi

{

∫ ∞

0
ϕi

( x
τγi

)

xs−1dx

}

f (τ,t)dτ , (11)

from which it follows that

∫ ∞

0
f (τ,t)τγi (s−1) dτ = tγo(s−1) ϕ∗o(s)

ϕ∗i (s)
, (12)

whereϕ∗i (s) andϕ∗o(s) are the Mellin transform ofϕi andϕo,
respectively. Antitransformation of (12) by using (5) gives

f (τ,t) =
γi

τ
1

2π i

∫

L

ϕ∗o(s)
ϕ∗i (s)

(

τγi

tγo

)−s+1

ds, (13)
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Formula (13) can be analogously written as

f (τ,t) =
γi

τ
τγi

tγo

1
2π i

∫

L

ϕ∗o(s)
ϕ∗i (s)

(

τγi

tγo

)−s

ds (14)

=
γi

τ
1

2π i

∫

L

ϕ∗o(s+1)

ϕ∗i (s+1)

(

τγi

tγo

)−s

ds, (15)

whereL is the proper integration path for each integral. Formula
(13) emerges to be the desired filter function which transforms an
input noise distributed aspi(x, t) into an output noise distributed
aspo(x,t).

GAUSSIANIZATION OF L ÉVY NOISE
The formalism discussed in the previous section can be used

to calculate the filter that given an input Lévy noise outputs a
Gaussian noise.

This means that, with reference to (8), the input noise is

γi =
1
α

, pi(x,τ) = τ−1/α ϕi

(

x

τ1/α

)

, (16)

where 0< α ≤ 2 is the characteristic exponent, and the Mellin
transform [9, see formula (5.1)]

ϕ∗i (s) =
1
α

Γ(1/α−s/α)Γ(s)
Γ(1−ρ + ρs)Γ(ρ−ρs)

, ρ =
α−θ

2α
, (17)

whereθ is the skewness parameter|θ | ≤min{α,2−α}. In order
to highlight these parameters, hereinafter Lévy density will be
denoted byLθ

α(x,t). It is well-known that the extension tox < 0
is given by the exchangeθ →−θ .

Since it is desired a Gaussian output noise,po(x, t) is

po(x,t) = G (x, t) =
1

2
√

πt
exp

{

−x2

4t

}

, (18)

so that with reference to (9)

γo =
1
2

, ϕo

( x

t1/2

)

=
1

2
√

π
exp

{

−1
4

( x

t1/2

)2
}

, (19)

and

ϕ∗o(s) =
1
2

Γ(s)
Γ(1/2+s/2)

. (20)

Finally, inserting (17) and (20) in (13), the Gaussianization
of the Lévy noise is obtained by the filter function

f (τ,t) =
1

2τ
1

2π i

∫

L

Γ(1+ ρs)Γ(−ρs)
Γ(−s/α)Γ(1+s/2)

(

τ1/α

t1/2

)−s

ds. (21)

The filter function emerges to be a self-similar function with the
following scaling law

f (τ,t) = tα/2
F

( τ
tα/2

)

. (22)

Formula (21) is the Mellin–Barnes integral representationof the
Gaussianing filter function. The integration pathL encircles the
poles ofΓ(1+ ρs). The filter f (τ,t) can be expressed in terms
of H-function, see Appendix, and it turns out to be

f (τ,t) =
1

2τ
H11

22

[

τ1/α

t1/2

∣

∣

∣

∣

(1,ρ)(1,1/2)
(1,ρ)(1,1/α)

]

, (23)

and then theGaussianizing formulafor a Lévy noise is

G (x,t) =

∫ ∞

0
Lθ

α(x,τ) f (τ,t)dτ , (24)

or analogously

G (x,t) =
1
2

∫ ∞

0
Lθ

α(x,τ)H11
22

[

τ1/α

t1/2

∣

∣

∣

∣

(1,ρ)(1,1/2)
(1,ρ)(1,1/α)

]

dτ
τ

. (25)

With reference to the Appendix, the existence condition for(23)
requires that

µ =
1
α
− 1

2
=

2−α
2α

> 0,

which holds forα ≤ 2, that means for all values of Lévy charac-
teristic exponentα.

In order to express the filter function (21) by a series, apply-
ing residue theorem to (21) gives

f (τ,t) =
1
τ

∞

∑
k=0

(−1)k

k!
Γ(k)

Γ[k/(αρ)]Γ[−k/(2ρ)]

(

τ1/α

t1/2

)k/ρ

. (26)
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Using the Gamma function propertyΓ(1− z)Γ(z) = π/sin(πz)
for the termΓ[−k/(2ρ)], formula (15) becomes

f (τ,t) =
−1
πτ

∞

∑
k=0

(−1)k

k!

Γ(k)Γ
(

1+ k
2ρ

)

Γ
(

k
αρ

) sin

(

π
k

2ρ

)

(

τ1/α

t1/2

)k/ρ

.

(27)
It is worth noting to remark that expression (27) is more con-
venient for numerical computation than (26). In fact, the pa-
rameterρ can be a rational number or be truncated to a ra-
tional number by the computer CPU, then there exist suchk∗
for thosek∗/(2ρ) ∈ N and thenΓ[−k∗/(2ρ)]→ ∞ which cre-
ates problem for the numerical computation of series (26). This
problem is avoided in (27) because for the samek∗ it results
sin[πk∗/(2ρ)] = 0.

As briefly discussed in the Appendix, the asymptotic expan-
sion of f (τ,t) for τ/tα/2→ ∞ is obtained by chosing an inte-
gration path in (21) that encircles all poles ofΓ(−ρs). Then it
results

f (τ, t) =
−1
πτ

∞

∑
k=0

(−1)k

k!

Γ(k)Γ
(

1+ k
αρ

)

Γ
(

k
2ρ

) sin

(

π
k

αρ

)

(

τ1/α

t1/2

)−k/ρ

.

(28)

Special Cases
In the symmetric caseθ = 0, such thatρ = 1/2, and then

applying residue theorem to (21) gives forτ/tα/2→ ∞

f (τ, t) =
−1
πτ

∞

∑
k=0

(−1)k

k!
Γ
(

1+
2k
α

)

sin

(

π
2k
α

)

( τ
tα/2

)−2k/α
. (29)

The plots of the filter functionf (τ, t) and the Lévy and Gaussian
PDFs for this symmetric case withθ = 0 are shown in FIG. 1 for
α = 0.8 andt = 1.

A Lévy PDF with extremal value of the skewness parameter
is calledextremal. It is possible to prove that for 0< α < 1 the
PDFs are one-sided on the positive semi-axes ifθ = −α and
the negative semi-axes ifθ = α. Since formula (21) is valid for
x > 0 here it is considered the extremal PDF forθ = −α and
thenρ = 1. In this case the filter function is

f (τ,t) =
−1
πτ

∞

∑
k=0

(−1)k

k!

Γ(k)Γ
(

1+ k
2

)

Γ
(

k
α
) sin

(

π
k
2

)

( τ
tα/2

)k/α
, (30)

and its asymptotic expansion

f (τ, t) =
−1
πτ

∞

∑
k=0

(−1)k

k!

Γ(k)Γ
(

1+ k
α
)

Γ
(

k
2

) sin

(

π
k
2

)

( τ
tα/2

)−k/α
. (31)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  5  10  15  20  25  30

filter
Levy

Gaussian

FIGURE 1. PLOTS OF THE REDUCED FUNCTIONS OF THE
FILTER F (ξ f ) (22), OF THE ĹEVY PDF ϕi(ξL) (16) AND OF THE
GAUSSIAN PDFϕo(ξG) (19), WITH α = 0.8 AND θ = 0, WHERE
THE ABSCISSA VALUES AREξ f = τ/tα/2, ξL = x/τ1/α AND ξG =

x/t1/2.

To conclude, when the input noise is Gaussianα = 2 and
θ = 0, then (21) reduces to

f (τ,t) =
1
τ

1
2π i

∫

L

(τ
t

)−s
ds= δ (τ− t) . (32)

In fact, the Mellin transform ofδ (τ − t) is

∫ ∞

0
δ (τ− t)τs−1dτ = ts−1 , (33)

from which the inversion formula turns out to be

δ (τ− t) =
1

2π i

∫

L

ts−1τ−sds

=
1
τ

1
2π i

∫

L

(τ
t

)−s
ds. (34)

CONCLUSION
The Mellin convolution integral is used to generally derive

the filter function that convert an input noise which is difficult to
be managed into a desirable output noise. This method is applied
to modify a Lévy noise into a Gaussian noise. The founded filter
function is emerged to be an higher trascendental hypergeomet-
ric function and its representation as Mellin–Barnes integral is
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given, as well as the representation in terms of H-function.The
asymptotic expansion is computed.

The special cases for symmetric and extremal Lévy densities
are also shown with their asymptotic expansions.

The construction of a method which, analogously to that
here presented, can be used to convert a general noise into a de-
sired noise, when they follow discrete PDFs, will be the subject
of the future development of the research.
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Appendix: H-function
The H-function is defined by means of a Mellin–Barnes type

integral as follows [13–15]

Hm,n
p,q

[

z

∣

∣

∣

∣

(a1,A1), . . . ,(ap,Ap)
(b1,B1), . . . ,(bq,Bq)

]

=
1

2π i

∫

L

h(s)z−sds, (35)

with

h(s) =
∏m

j=1Γ(b j +B js)∏n
i=1 Γ(1−ai−Ais)

∏q
j=m+1 Γ(1−b j−B js)∏p

i=n+1 Γ(ai +Ais)
, (36)

where an empty product is always interpreted as unity,
{m, n, p, q} ∈N0 with 1≤m≤ q and 0≤ n≤ p, {Ai , B j} ∈R+

and{ai , b j} ∈ R, or C, with i = 1, . . . , p and j = 1, . . .q such
that Ai(b j + k) 6= B j(ai − ℓ− 1) with k andℓ ∈ N0, i = 1, . . . ,n
and j = 1, . . . ,m. The poles of the integrand in (35) are assumed
to be simple. The integration pathL encircles all the poles of
Γ(b j +B js) with j = 1, . . . ,m.

The H-function is an analytic function ofzand exists for all
z 6= 0 whenq≥ 1 andµ > 0 or for 0< |z| < ∆ whenq≥ 1 and
µ = 0 where

µ =
q

∑
j=1

B j −
p

∑
i=1

Ai , ∆ =

{

p

∏
i=1

A−Ai
i

}{

q

∏
j=1

B
B j
j

}

.

For other existence conditions see [13–15].
The asymptotic expansion for|z| → ∞ is obtained by inte-

gration around the poles ofΓ(1−ai−Ais) with i = 1, . . . ,n. Ac-
tually this is similar to exchanges→−s and then passing from
the series of powers ofz to a series of powers of 1/z, from which
the asymptotic expansion.
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In the particular case withn = 0 the asymptotic behaviour is
of exponential type and determined for realzby the formula

Hm,0
p,q (z)≃O

(

z[Re(ω)+1/2]/µ
)

exp

{

µ cos

(

ζπ
µ

)

( z
∆

)1/µ
}

, (37)

for z→ ∞ where

ω =
q

∑
j=1

b j −
p

∑
i=1

ai +
p−q

2
, ζ =

m

∑
j=1

B j −
p

∑
i=n+1

A j .
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