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dynamics should be characterized by fractional order iiffgal

Noises are usually assumed to be Gaussian so that many models as pointed outin [3] based on [4]. Therefore, in fonetl

existing signal processing techniques can be applied with n
worry. However, in many real world natural or man-made sys-
tems, noises are usually heavy-tailed. It is increasinglsichble

to address the problem of finding an opportune filter functan

a given input noise in order to generate a desired outputenois
By filtering theory, the probability density function of thetput
noise can be expressed by the integral of the product of the de
sity of the input noise and the filter function. Adopting Ntell
transformation rules, the Mellin transform of the unknown fi
ter is determined by the Mellin transforms of the known dgnsi
of the input noise and the desired density for the outputenois
Finally, after the inversion, the Mellin—Barnes integrajpresen-
tation of the filter function is derived. The method is applie
compute the filter function to convert &by noise into a Gaus-
sian noise.

INTRODUCTION

order control [5] and fractional order signal processing itlis
increasingly desirable to address the problem of finding@n o
portune filter function for an input noise of a given disttion

in order to generate an output noise of the desired distoibut

In this contribution, noises with continuos probabilityndéy
function (PDF) are taken into account. The Mellin transform
tool is considered and in particular its convolution-typeegral,
where as convolution integral is intended that integraluding

the product of two functions whose transform is the prodict o
the corresponding transformed functions. By filtering tiyethe
PDF of the output noise can be expressed by the integral of the
product of the density of the input noise and the filter fumati
Adopting Mellin transformation rules, the Mellin transforof

the unknown filter can be determined by the Mellin transforms
of the known density of the input noise and the desired dgnsit
for the output noise. Finally, after the inversion, the NMell
Barnes integral representation of the filter function isiwst.
The method is applied to compute the filter function to conaer

In many real world natural or man-made systems, noises are |_gvy noise into a Gaussian noise.

usually heavy-tailed [1] with lots of spikes and for thisytere
difficult to be managed and should be further processed [&]. F
example, the networked induced delays in networked cosysl
tems (NCS) are of spiky nature which hints that the genagatin

*Address all correspondence to this author.

MELLIN CONVOLUTION FOR SIGNAL FILTERING
Mellin transform is a powerful mathematical tool that bette
than other methods permits to successfully evaluate iakef—
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8], derive subordination formula [9, 10], naturally reldte the
Mellin—Barnes integral representation of Special Fumsi¢g,
11, 12] and then also to manage higher transcendental €unscti
and the well-known H-function [13-15], see Appendix.

The Mellin transform of a functiomy(x), for x > 0, is de-
fined as

s):/ W) ldx, secC, (1)
0
and the antitransformation formula reads
1 O+ico
Yx) = =—— Pr(s)x 3ds, o =%e(s). 2
2m O—ico
The transformed functiony*(s) exists if the integral

/ |@((x)|x*"1dx is bounded and this constraint is met in
0

the vertical stripa < 0 = Z¢e(s) < b, where the boundary values
a andb follow from the analytic structure af(x) provided that
|@(x)| < Mx~2whenx — 0F and|@/(x)| < Mx° whenx — 4.
Hereinafter, the Mellin transformation pair is denoted by

a

Wx) <L gi(s). 3)
Please see specialized treatises and/or handbooks [6rThpfe
details.

Applying residue theorem to (2), the original functigix)
has the following series representation

n

= 3 Res('(

9} x %, (4)

where Res stands for residue afidwith k= 1,....n, are then
poles of the transformed functiap*(s). This means that anti-
transformation formula (2) can be re-written as

o | W

where.Z is the integration path that encircles all the pofgef
the integrandp™(s).

Here, it is calledconvolutionthat operator involving two
functions whose trasformation is given by the product of the
transformation of two involved functions. What concerndiMe
transform the convolution is

~Sds,

(5)

v = [ (%) em L v we. 6

Let pi(x,t) and po(x,t) be the PDF of the input and output
noise, respectively, whesec Ris the random fluctuation of the
noisy signal and € R" is an associated positive parameter as for
example the elapsed time. Then a general input ngisan be
transformed intg, by an opportune filtering functiofithrough
the subordination type formula

Po(X,t) = /Ooo pi(x, T)f(T,t)dr. @)

If the statistical self-similarity for both input and outpgignals

is assumed, then, for the opportune choice of a scalingrfdeto
pending o, the statistical description of the signals emerges to
be scale invariant. Then, since the whole statistical mftron is
included inside the PDF, it means that the PDFs of the inpait an
output signals can be expressed in the following scale ianar
arrangement

Pt =7 %0 (2 ) (®)

Polx.t) =t %o () ©)

wheret¥ and¢;(x/1%) embodied the scale factor and the scale
invariant functional form ofpi(x, 7), ™! and¢o(x/1%) have the
same meaning fapy(x,t). Finally, formula (7) becomes

%, (tyo) = /0oo T Y (%) f(r,t)dr.

Formula (10) can be understood as a convolution integral (6)
after straightforward change of variable.

Consider the positive semi-axes> 0. Applying Mellin
transform (1) to both sides of (10) gives

/%(tvo)xs_ldx—
b {/ o (o )X“dX} (t.t)dr, (11)

from which it follows that

(10)

$5(s)
¢ ()’

/ f(r,t) TV dr =pes-D 12)
0

where¢;"(s) and ¢5(s) are the Mellin transform of; and ¢o,
respectively. Antitransformation of (12) by using (5) give

¥ 95(9) (_)‘S“ds’

T 2m 2 97 (s) \[th

f(t,t) =

(13)
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Formula (13) can be analogously written as Finally, inserting (17) and (20) in (13), the Gaussianizati
of the Lévy noise is obtained by the filter function

L T C) ( )
f == — — d s
(T.Y Tt 21 o ¢7(s) \ 1 S (14) f(r.t) = 11 F(1+ps)l(—ps) (1Y ds. (21)
Y 05(s+1) ( )—Sds (15) 2t 2m )2 T(—s/a)M (145/2) \ 1172 '
T 2m v ¢ (s+1) \tw ’

The filter function emerges to be a self-similar functionhitite
where.Z is the proper integration path for each integral. Formula  following scaling law

(13) emerges to be the desired filter function which tramsfoan
input noise distributed ag; (x,t) into an output noise distributed

T
aspo(x,t). f(1,t) =t927 (W) . (22)

GAUSSIANIZATION OF L EVY NOISE Formula (21) is the Mellin—Barnes integral representatibtine

The formalism discussed in the previous section can be used Gaussianing filter function. The integration pathencircles the

to calculate the filter that given an input Lévy noise ouspat ~ Poles ofl (1+ ps). The filter f(7,t) can be expressed in terms
Gaussian noise. of H-function, see Appendix, and it turns out to be

This means that, with reference to (8), the input noise is

F(T,1) = — HY /e
T, 22
h=g pi(x,r>=rl/"¢i(rlx/a>, (16) 2t e

(1.0)(1,1/2
(Lo)(L 1/a>] - ®

where 0< o < 2 is the characteristic exponent, and the Mellin and then th&aussianizing formuléor a Levy noise is

transform [9, see formula (5.1)]

%(x,t):/oooLg(x,r)f(r,t)dT, (24)
w1 T(l/a—s/a)l(s) _a-#6
¢ (S)_Er(l—p+ps)r(p—ps)’ P="%q » @D

or analogously

where@ is the skewness parametét < min{a,2—a}. In order
to highlight ghese pa_rameters, hereinafter Lévy d_ensﬂVtw Le H“ l/a (1,0)(1,1/2) g
denoted byt g (x,t). Itis well-known that the extension to< 0 X T) 172 [ (1Lo) (11
co a ti/2 [ (Lp)(L,1/a) | T
is given by the exchangg — —86.

Since it is desired a Gaussian output nojggXx,t) is

(25)

With reference to the Appendix, the existence condition &)
2 } requires that

Pol) = 4(t) = 5 exp{ - (18)

so that with reference to (9)

1 « 1 1, x 2 wh_ich holds fora < 2, that means for all values of Lévy charac-
> do (m) = W_ exp{—Z (W) } , (19) teristic exponentr.
Tt t In order to express the filter function (21) by a series, apply
ing residue theorem to (21) gives

Yo=

and

k/p
. 1 r(s) 1 ® (—1)K (k) rVa
P8 2Tz e e ANCCY
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Using the Gamma function properfy{1 — z)I (z) = 11/ sin(1z) 100
for the terml[—k/(2p)], formula (15) becomes

filter
Levy -w------
10 F Gaussian - ]

g @ (_pkFr (1+ 1/a\ ¥P
El Z ) r((k)ZP) sm( 2:) <:1/2> . 1

ap Y

(27) 0.1

It is worth noting to remark that expression (27) is more con-

venient for numerical computation than (26). In fact, the pa 0.01

rameterp can be a rational number or be truncated to a ra-

tional number by the computer CPU, then there exist such 0.001

for thosek./(2p) € N and thenl[—k./(2p)] — c which cre-

ates problem for the numerical computation of series (26)s T 0.0001

problem is avoided in (27) because for the saket results

sin[rik. /(2p)] = 0. Le.08

As briefly discussed in the Appendix, the asymptotic expan-
sion of f(1,t) for 1/t%/?2 — w is obtained by chosing an inte-
gration path in (21) that encircles all polesiof—ps). Then it FIGURE 1. PLOTS OF THE REDUCED FUNCTIONS OF THE

results FILTER .Z (&1) (22), OF THE LEVY PDF ¢;i(&.) (16) AND OF THE
GAUSSIAN PDF¢o(&éc) (19), WITH a = 0.8 AND 6 = 0, WHERE
1 & (—pkFr (1+ a—kp) _ K [\ P THE ABSCISSA VALUES ARES; = /1912, & —x/TH% AND &g =
f(1,t) = — sin — x/t1/2,
k! r Kk t1/2
= (%)

28
(28) To conclude, when the input noise is Gaussiag- 2 and

6 =0, then (21) reduces to
Special Cases

In the symmetric casé = 0, such thajp = 1/2, and then

applying residue theorem to (21) gives ﬁqﬁt“/z—mo f(r,t) = }i (I)fsds: o(t—t). (32)
T2m Joy \t
~1 2 (—1)k 2k 2k\ / T \~/a _ _
fr)=— kZO 0" <1+ E) sin <7T ) (t0/2) - (29) In fact, the Mellin transform o8(t —t) is
The plots of the filter functiori (7,t) and the Lévy and Gaussian /w 5(t _t)TS—ldT =t51 (33)
PDFs for this symmetric case with= 0 are shown in FIG. 1 for 0

o =0.8andt =1.
A Lévy PDF with extremal value of the skewness parameter from which the inversion formula turns out to be
is calledextremal It is possible to prove that for @ o < 1 the

PDFs are one-sided on the positive semi-axe8 # —a and 1,

the negative semi-axes® = a. Since formula (21) is valid for / t ds

x> 0 here it is considered the extremal PDF = —a and T

thenp = 1. In this case the filter function is =7 2711 ., (;) ds. (34)

—1 & (—DKFRr (1+%) 7/ k T \Ka
fo) =0 2 ( k!) ( )r ((5> d S'”<"§> (W) , (80)  concLusION

k=0 a The Mellin convolution integral is used to generally derive

the filter function that convert an input noise which is diffico
be managed into a desirable output noise. This method igeappl
to modify a Lévy noise into a Gaussian noise. The foundestfilt
) (L)*k/“. (31) function is emerged to be an higher trascendental hypergeom

ric function and its representation as Mellin—Barnes irdegs

and its asymptotic expansion

1 CTRrask) (K
f(r,t)—Ek;) " r(%) sm(
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given, as well as the representation in terms of H-functibime [11] Paris, R. B., and Kaminski, D., 2001 Asymptotic and

asymptotic expansion is computed. Mellin-Barnes IntegralsCambridge Univ. Press.
The special cases for symmetric and extremal Lévy dessitie [12] Mainardi, F., and Pagnini, G., 2003. “Salvatore Pirtdte
are also shown with their asymptotic expansions. the pioneer of the Mellin—Barnes integralsd. Comput.
The construction of a method which, analogously to that Appl. Math., 153(5), pp. 331-342.
here presented, can be used to convert a general noise ieto a d [13] Mathai, A. M., and Saxena, R. K., 1978he H-Function
sired noise, when they follow discrete PDFs, will be the sabj with Applications in Statistics and Other Disciplina¥iley
of the future development of the research. Eastern, New Delhi.

[14] Srivastava, H. M., Gupta, K. C., and Goyal, S. P., 198%&
H-Functions of One and Two Variables with Applications
South Asian Publishers, New Delhi.

[15] Mathai, A. M., Saxena, R. K., and Haubold, H. J., 2010.
The H-Function. Theory and ApplicatianSpringer.
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Appendix: H-function
The H-function is defined by means of a Mellin—Barnes type
integral as follows [13-15]
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In the particular case with = 0 the asymptotic behaviour is
of exponential type and determined for redly the formula

Hg?.qO(Z) ~0 (z[Re(w)+1/2]/u) exp{u cos(%) (g) l/“} ., (37)

for z— o where

o

o]
~
I
M3
o
|
>

q p—
w=Ybj-Ya+ o,
le = 2 = ]
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