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Abstract

Releases of liquid petroleum hydrocarbon into the environment, especially into the

ocean, are called oil spills. To correctly model dispersion on ocean surface both large and

small scale processes must be considered. In fact, the motion of the centre of mass is driven

by large scale meandering and spot enlarging is controlled by small scale turbulence. A

Lagrangian stochastic model for turbulent dispersion of oil spills on ocean surface is

here formulated: large scale meandering is analytically prescribed by the stream function

proposed by Bower for meandering jet in the Gulf Stream; small scale turbulence has

been modelled by a Lagrangian stochastic process for turbulent relative dispersion which

is based on turbulent flow rotation. Numerical simulations are performed to highlight the

effects on oil spills dispersion of differences in the velocity field intensity and those due

to releases in the centre or in the boundary of a meandering jet.
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1. Introduction.

The name oil spills is referred to releases of liquid petroleum hydro-
carbon into the environment, mainly due to human activity, which clearly
embodies a form of pollution. This term often is used for marine oil spills,
when oil is released into the ocean or coastal waters, and it may be a vari-
ety of materials including crude oil, refined petroleum products (gasoline or
diesel fuel), oily refuse or oil mixed in waste. To reduce the negative effects
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of these releases, besides prevention techniques [1], prediction models are
of paramount importance especially to improve human response on land to
minimize the consequences.

In open seas, oil spills damage the organisms that reach the water surface
to breath, birds that seek for food in the water and also micro-organisms
that live in the surface, while they damage flora and fauna in the coastal
areas. Moreover, the oil percolation in the beach creates sedimentation that
makes hard the land reclamation. Obviously, environmental damages due
to oil spills have dangerous effects also on human health and they are a
problem for social, economical and touristic reasons.

Lagrangian stochastic modelling has been largely validated for turbu-
lent dispersion in several applied problems included environmental, see for
example Ref. [2] for the atmosphere and Ref. [3] for the ocean. Here a
Lagrangian stochastic model is developed to study the dispersion of oil
spills on the ocean surface. This model includes both large and small scale
processes. In particular, the meandering due to large scale is modelled con-
sidering for the centre of mass motion the analytical stream function pro-
posed by Bower for the Gulf Stream meandering jet [4], and the enlarging
of the oil spot, which is driven by small scale turbulence, is studied by a La-
grangian stochastic model for turbulent relative dispersion [5] when particle
pair motion is correlated and by the sum of the stream meandering and an
Ornstein–Uhlenbeck stochastic process when particles become statistically
independent.

The rest of the paper is organized as follows. In Section 2 the main
characteristics of ocean turbulence are reminded. In Section 3 the dispersion
model is developed and in Section 4 numerical simulations are performed.
In Section 5 conclusions are given and further development addressed.

2. Turbulence in the ocean surface.

In order to define the physical framework under consideration, some
characteristics of turbulence in the ocean are reminded; the interest reader
can find more details in Refs. [6,7]. For what concern tracers dispersion
on the ocean surface, the most important layer is the Upper Mixed Layer
(UML). Here temperature is constant and its depth is around 100 m, at
the tropics, while at high latitudes it ranges between 10 ÷ 20 m in the
summer and several hundreds of meters in the winter. Velocity fluctuations
are of the order 1 cm s−1 and rapidly decrease when the depth increases.
The bottom boundary layer of UML is characterized by an irregular shape
due to internal waves and large scale turbulent vortexes, with dimension
comparable with the depth of the UML itself. In general, at all latitudes, the
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density increases with the depth, as well as the saltiness, even if a different
vertical profile characterizes each geographical area.

Turbulence is generated mainly by overturning of surface waves, convec-
tion in layer with unstable stratification and by a number of instabilities,
e.g. instability of local velocity gradient in internal waves, instability of
vertical velocity gradient in oceanic large scale stratified flows.

The horizontal dimension of the ocean can be assumed as the larger
length scale Lmax, and the smallest length scale Lmin can be estimated
by Kolmogorov theory of local isotropic turbulence [8], i.e. Lmin = η =
(ν3/ε)1/4, where ν is the kinematic viscosity and ε is the mean rate of turbu-
lent kinetic energy dissipation. A good estimation of ε is 10−1÷10−5 cm2 s−3

and then, since in the ocean ν ≃ 10−2 cm2 s−1, Lmin ranges between 1mm
and 1 cm. For what concern temporal scales, also in this case from Kol-
mogorov theory the shortest timescale follows to be Tmin = τη = (ν/ε)1/2

and for the same value of ε considered above it follows that Tmin = 1÷100 s.
Much more difficult is to establish the longer timescale Tmax because the
timescale of large lengthscale motions is not fixed. Temporal cycles are of
some years but they depend also on climate changes whose characteristic
time is of the order of geological eras. However, when turbulence is consid-
ered, it can be assumed Tmax = 3 · 107 s.

When the horizontal dimensions of turbulent motion are much more
larger than the lengthscale of buoyancy or the depth of the UML, then large
scale turbulence occurs and the vorticity axis is approximately vertical.
In general, such macro turbulence can be generated by circular motion
due to several mechanisms: turbulent wind field, barotropic or baroclinic
instabilities, vortexes generated by topography of the ocean bottom, etc...
One of the main large scale manifestation of turbulence in the ocean are
synoptic vortexes, which have dimension around 100 km.

3. Oil spill dispersion model.

3.1. Lagrangian stochastic model formulation

Oil spills need months, or even years, to clean up and this depends on
several elements. Moreover, since this cleaning process is slow in time and,
up to special circumstances, it involves a small fraction of the total volume
of oil released then oil spills can be considered non-reacting passive tracers.

Turbulent dispersion in the ocean is given by the combination of large
scale turbulence, which is responsible of the motion of the centre of mass,
with small scale turbulence, which drives the enlarging of the oil spot. In
particular the enlarging of the oil spill is a problem of turbulent relative
dispersion.
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Lagrangian stochastic models have been largely used and validated in
problems of turbulent dispersion both in atmosphere and ocean [2,3,5,9–
13]. Let (x(1),x(2)) and (u(1),u(2)) be the position and the velocity of two
particles, respectively, and let ∆x and ∆u be the relative position and the
relative velocity, and Σx and Σu be the double of centre of mass position
and velocity, then

(1)

{

Σx = x(1) + x(2)

Σu = u(1) + u(2) ,

{

∆x = x(1) − x(2)

∆u = u(1) − u(2) ,

and for each particle

(2)

{

x(1) = Σx− ∆x

2

u(1) = Σu− ∆u

2

,

{

x(2) = Σx+ ∆x

2

u(2) = Σu+ ∆u

2

.

The motion of the centre of mass of each particle pair is deterministically
described by the integral equation

(3) Σx(t) = Σx(0) +

∫ t

0
U(Σx, τ) dτ ,

where U(Σx, t) is the average velocity field in the place Σx at time t and it
can be determined by using an oceanic circulation model or introducing an
analytical stream function. Here the second approach is followed and the
stream function proposed by A.S. Bower [4] to reproduce meandering jet of
the Gulf Stream is adopted.

The enlarging of the oil spill is described by relative dispersion of particle
pairs. When the modulus of particle separation |∆x| = ∆x = (∆x ·∆x)1/2

is less than the Eulerian lengthscale λ the particle motion is correlated and
a turbulent relative dispersion model has to be used. When r is larger than
λ, particles become statistically independent and the motion of each one
x(i) follows from the sum of the large scale average velocity field U and a
turbulent fluctuation u′

(4) x(t) = x(0) +

∫ t

0
(U(x, τ) + u′(x, τ)) dτ .

For absolute dispersion of independent particles, the evolution of the tur-
bulent velocity fluctuation u′ can be modelled by an Ornstein–Uhlenbeck
stochastic process

(5) du′ = −u′

τL
dt+

√

C0ε dW ,

where dW is a Wiener process with zero mean and variance dt, the noise
amplitude

√
2C0ε is chosen consistently with the second order Lagrangian
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structure function, i.e. SL = 〈(u(j)i (0)−u(j)i (t))2〉 = C0εt, j = 1, 2, i = 1, 2, 3,
where C0 is a universal constant, and τL is the Lagrangian integral timescale
defined by

(6) τL =
2σ2

C0ε
,

with σ2 = 〈u′ · u′〉/3. When t ≪ τL, or t ≫ τL, the dispersive regime is
called inertial, or diffusive.

It is important to remark that if the scale of the average velocity gra-
dient is less than the Eulerian lenghtscale λ then when r < λ the field
U can be considered approximately constant and particle relative motion
does not depend on U. In this case relative dispersion can be modelled in
homogeneous, stationary and isotropic turbulence and here the Lagrangian
stochastic process introduced in Ref. [5] is chosen.

3.2. Stream function

The stream function adopted in the present model is that proposed by
A.S. Bower [4] to study the meandering jet of the Gulf Stream. In the
present analysis the steady state t = 0 is considered and then it reads

(7) ψ(x, y) = ψ0

(

1− tanh

[

y −Acos(Kx)
Λ
√

1 + k2A2sin2(Kx)

])

,

where x and y are the coordinates in an fixed inertial system, Λ = 40km is
the semi-amplitude of the jet, ψ0 is a scale factor to determine the maximum
velocity as sc = ψ0/Λ, A = 50km is the amplitude of the wave packet,
K = 2π/L is the wave number associated to the wave length of the meander
L = 400Km.

The two-dimension components of the average velocity field U = (U, V )
are given by U = −∂ψ/∂y and V = ∂ψ/∂x.

3.3. Lagrangian stochastic model for turbulent relative dispersion

For separation less than the Eulerian lengthscale λ, the enlarging of the
oil spot is driven by small scale turbulence and homogeneity, stationarity
and isotropy are assumed. With this modelling assumption the Lagrangian
stochastic model for turbulent relative dispersion formulated in Ref. [5] can
be chosen and in this section it is briefly reminded. To lighten notation, let
∆x and ∆u′ be replaced by r and u, respectively. The relative motion be-
tween two fluid particles is described by the stochastic differential equations

(8) dr = u dt , du = a dt+
√

2C0ε dW ,
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where a = a(u, r, t) is a nonlinear drift term and the phase-space La-
grangian probability density function (PDF) pL(u, r; t|r0) evolves according
to the Fokker–Planck equation

(9)
∂pL
∂t

= − ∂

∂ri
(uipL)−

∂

∂ui
(aipL) + C0ε

∂2pL
∂ui∂ui

.

The model is constructed in the framework of the Well-Mixed Condition [9],
which guarantees consistency between Eulerian and Lagrangian statistics,
and then, after applied the integral relation pE(u; r, t) =

∫

pL(u, r; t|r0)dr0
to (9), the drift term is determined as

(10) ai pE = C0ε
∂pE
∂ui

+Φi ,
∂Φi

∂ui
= −∂pE

∂t
− ∂uipE

∂ri
,

where pE is the Eulerian PDF of turbulent velocity fluctuation and |Φ| → 0
when |u| → ∞. However, for a given Eulerian PDF, the drift coefficient a

defined in (10) is determined up to an additive term with zero divergence
with respect to u. The closure derived in [5] is based on the physical picture
of fluid particle pair as a couple of material points rotating around their
centre of mass. In this case, exact kinematic results can be obtained and
used to uniquely determine the drift term a(u, r, t) in (8). In fact, the
Lagrangian relative velocity can be written as

(11) u = u‖
r

r
+Ω× r ,

where Ω is a pair angular velocity defined as

(12) Ω =
1

r2
(r× u) .

The Lagrangian relative acceleration is defined as A = du/dt = A(1)−A(2)

where A(i) = du(i)/dt, and its most general form, when (11) holds, is

(13) A = α1
r

r
+ α2(Ω× r) + α3(r× (Ω× r)) ,

that, using (12), can be rearranged as

(14) A = (α1 − α2u‖)
r

r
+ α2u+ α3r

2Ω ,

where α1, α2 and α3 are coefficients to be determined by symmetries and
properties of the process by relating the exact kinematic formula (14) to
the drift term of the stochastic model (8).
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The isotropy permits to move to spherical reference frame: {u} →
{u‖, u′⊥, u”⊥} → {u‖, u⊥, α} where u‖ = u · r/r, u2⊥ = u2 − u2‖, u

2 = u · u,
and α ∈ [0; 2π] is a uniformly distributed angle. In the new reference frame
(8) becomes
(15)

dr = u‖ dt , du‖ = χ‖ dt+
√

2C0ε dW‖ , du⊥ = χ⊥ dt+
√

2C0ε dW⊥ .

As pointed out by [12], in isotropic turbulence the drift term a in Cartesian
coordinates has the following general form

(16) a(u‖, u⊥, r, t) = ϕ(u‖, u⊥, r, t)
r

r
+ ψ(u‖, u⊥, r, t)

u

u
,

where ϕ and ψ are two unknown scalar functions. The drift terms in Carte-
sian and spherical coordinates are related to each other as follows [14]

(17) χ‖(u‖, u⊥, r, t) = a‖ +
u2⊥
r

= ϕ+ ψ
u‖

u
+
u2⊥
r
,

(18) χ⊥(u‖, u⊥, r, t) =
uiai − u‖a‖

u⊥
−
u‖u⊥

r
+
C0ε

u⊥
= ψ

u⊥
u

−
u‖u⊥

r
+
C0ε

u⊥
.

From (17) and (18) the following expressions for ϕ and ψ are found

(19) ϕ = χ‖ −
u‖

u⊥
χ⊥ − u2

r
+
u‖

u⊥

C0ε

u⊥
,

(20) ψ =
u

u⊥
χ⊥ +

uu‖

r
− u

u⊥

C0ε

u⊥
,

that substituted in (16) yields

(21) a = χ‖
r

r
+

1

u⊥

(

u− u‖
r

r

)

(

χ⊥ − C0ε

u⊥

)

+Ω× u .

For the noise dW, a representation of the type of (16) cannot be given
because a Markovian noise is not a function of r or u. However, keeping
in mind that in the chosen reference frame the motion is only radial with
respect to the centre of mass, the noise can be explicitly considered in the
longitudinal direction while in the transverse direction it is implicitly taken
into account by the dependence of the drift term on the stochastic variable
u⊥, finally

(22) dW =
(

dW · r
r

) r

r
= dW‖

r

r
.
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Hence, considering that

(23) A dt = a dt+
√

2C0ε dW

formally holds, substitution of (16) and (22) in (23) gives

(24) A dt =
(

ϕdt+
√

2C0ε dW‖

) r

r
+ ψ

u

u
dt .

Now, comparing (24) and (14) the coefficients α2 and α3 are determined as
α2 = ψ/u and α3 = 0. Furthermore, the above definition of A‖ gives

α1 dt = A‖ dt = a‖ dt+
√

2C0ε dW‖ ,

so that α1 includes all the effects of the stochastic noise. From comparison
of (24) and (14) the following equation is obtained for ϕ

(25) ϕ = a‖ − α2u‖ .

Substitution in (25) of ϕ by (19) and of a‖ by (17) gives

(26)
u‖

u⊥

(

χ⊥ − C0ε

u⊥

)

+
u2

r
=
u2⊥
r

+ α2u‖ .

From (22) and arguments above it, the effects of the stochastic noise
are only along the r/r direction. Therefore α2 appears to be independent
of C0ε because it is the coefficient in the (Ω × r)/|Ω × r| direction. This
means that χ⊥ = C0ε/u⊥+f(u‖, u⊥, r). The system of stochastic equations
(15) gives the evolution in time of the PDF pL(u‖, u⊥, r; t|r0) that can
be composed by the product pL(u‖, r; t|u⊥, r0)p(u⊥; t|r0) and from this, in
stationary turbulence, it is statistically sound to have χ⊥ = χ⊥(u⊥, r).
From dimensional analysis χ⊥ assumes the form

χ⊥ =
C0ε

u⊥
+ k

u2⊥
r
,

where k is a dimensionless real number which has to be determined. How-
ever, for numerical stability k must be zero [5] and χ⊥ is given by

(27) χ⊥ =
C0ε

u⊥
,

therefore α2 = u‖/r. Finally, with α1 = A‖, α2 = u‖/r, α3 = 0, formula
(13) becomes

(28) A =

(

A‖ +
u2⊥
r

)

r

r
+Ω× u .
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Note that, since (28) is recovered using (21) and (27) it follows from com-
bination of exact kinematic results and the stochastic model.

The physical picture described above selects a unique model in the Well-
Mixed class, and thereby solves the drift indeterminacy. In fact, applying
the Well-Mixed Condition to (15) and using (27), the following Fokker–
Planck equation is obtained

∂pE
∂t

+
1

r2
∂

∂r
(r2u‖pE)

+
∂

∂u‖
(χ‖pE) = C0ε

[

∂2pE
∂u2‖

+
1

u⊥

∂

∂u⊥

(

u⊥
∂pE
∂u⊥

)

]

,(29)

with the normalization condition 2π
∫ +∞
−∞ du‖

∫ +∞
0 du⊥u⊥pE(u‖, u⊥; t|r) =

1. Integrating (29) in u‖ ∈
]

−∞;u‖
]

, the parallel drift term χ‖ is determined
by

(30) χ‖ = C0ε
1

pE

∂pE
∂u‖

− 1

pE
Ψ(u‖, u⊥, r, t) ,

where

(31) Ψ =

∫ u‖

−∞

{

∂pE
∂t

+
1

r2
∂

∂r
(r2u′‖pE)−

C0ε

u⊥

∂

∂u⊥

(

u⊥
∂pE
∂u⊥

)}

du′‖ ,

with the general assumptions

χ‖pE → 0 ,
∂pE
∂u‖

→ 0 , |u‖| → ∞ .

Equation (30) shows the dependence of the longitudinal drift χ‖ on u⊥,
which is different from Quasi-One-Dimensional models, e.g. [12,13].

In order to define an operational model a Eulerian PDF pE is needed.
However, noting that by (27) the drift term ai (16) becomes

(32) ai = ϕ
ri
r
+
u‖ui

r
,

the choice of pE reduces to the choice of ϕ. The choice studied in Ref. [5]
and adopted here is

(33) ϕ = −
u‖

τ(r)
+ γ

u2‖

r
+

1

2

u2⊥
r

+ ρ
u‖u⊥

r
,

where {γ , ρ} are the model parameters, which will be determined by im-
posing Eulerian statistics. Obviously, the choice of ϕ does not guarantee
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the existence of pE and then the fulfillment of the Well-Mixed Condition.
The relaxation-time, denoted by τ(r), depends on the particle separation
and is defined as

(34) τ(r) =
〈u2‖〉
C0ε

,

where 〈u2‖〉 is the Eulerian second order structure function such that

(35) 〈u2‖〉 =
{

CK(εr)2/3 = 2σ2
(

r
λ

)2/3
, r ≪ λ

2σ2 , r ≫ λ
,

and CK is a universal constant. From (35) it follows that, in the limit
r ≫ λ, formula (34) reduces to (6). In Cartesian reference frame the drift
term turns out to be

(36) ai =

(

−
u‖

τ(r)
+ γ

u2‖

r
+

1

2

u2⊥
r

+ ρ
u‖u⊥

r

)

ri
r
+
u‖ui

r
.

To ensure the incompressibility in stochastic models the identity 〈ai〉 = 0
must hold [11], and then since in homogeneous, stationary and isotropic
turbulence

(37) 〈uiuj〉 =
[

〈u2‖〉 −
1

2
〈u2⊥〉

]

rirj
r2

+
1

2
〈u2⊥〉δij ,

and in the inertial range 〈u‖〉 = 0, 〈u‖u⊥〉 = 0 and 〈u2⊥〉 = 8
3〈u2‖〉, it follows

that γ = −7/3.
The parameter ρ is determined by imposing the consistency with some

other Eulerian statistical moments, as in the Moments Approximation ap-
proach [11]. Multiplying equation (29) by uk‖u

n
⊥ and integrating with respect

to 2πu⊥du‖du⊥ yields

2

r
mk+1,n +

∂

∂r
mk+1,n +

k

τ
mk,n

+
4

3

k

r
mk+1,n − 3

2

k

r
mk−1,n+2 − ρ

k

r
mk,n+1 =

C0ε
{

k(k − 1)mk−2,n + n2mk,n−2

}

,(38)

where mk,n = 〈uk‖un⊥〉 = Ck,n(εr)
2/3. Equation (38) gives a relationship

among all the Eulerian statistics of the Markov model (36). In particular,
with {k = 3, n = 0} and {k = 3, n = 0} Eq. (38) gives

(39) ρ =
1

m3,1

[

2m4,0 +
r

3

∂m4,0

∂r
+ C0εr

m3,0

m2,0
− 3

2
m2,2

]

.

Using DNS data to compute the Eulerian statistics mk,n needed to obtain
ρ, in Ref. [5] ρ has been estimated as ρ = −3653/651 ∼ −5.6.
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4. Numerical simulations.

4.1. Determination of scales

It is well-known that a large number of scales occurs in turbulent flows,
in particular in the ocean these vary for amplitude, depth and other pa-
rameters related to the considered domain. Since the stream function (7) is
referred to the Gulf Stream, it can be stated

(40) σ2 = 7.47 km2 d−2 , τL = 1d ,

where the length and time physical dimension are expressed in Kilo-
meters (km) and days (d), respectively. Remembering the definition of
τL (6) and the corresponding definition of λ from first line in (35), i.e.
λ = ε−1(2σ2/CK)3/2, the other scales of the process are determined as

(41) ε = 2.49 km2 d−3 , λ = 8.19 km ,

where C0 = 6 and CK = 2 are assumed.
Numerical simulations of the Lagrangian stochastic model introduced

in §3 are largely performed and discussed in [15]. Here a selection of them
is presented. Two cases with the same stream function (7), which differ for
the scale factor ψ0, are analyzed:

- case A: ψ0 = 4000 km2 d−1 ⇒ sc = 100 kmd−1 ,
- case B: ψ0 = 8000 km2 d−1 ⇒ sc = 200 km d−1 .

The numerical simulations performed and parameter values are summarized
in Table 1.

Let L be the lengthscale of the gradient of U , it can be estimated di-
viding the modulus of U by the maximum of ψyy:

- case A: [ψyy]max ≃ 2 d−1 for y ≃ 25km

⇒ L =
|U|

[ψyy]max
≃ 25 km when |U| ≃ 50 km d−1 ,

- case B: [ψyy]max ≃ 4 d−1 for y ≃ 25km

⇒ L =
|U|

[ψyy]max
≃ 25 km when |U| ≃ 100 km d−1 .

From these estimations it follows that the Eulerian lengthscale λ and the
average velocity gradient lenghtscale L are such as the inhomogeneity of
the field U becomes important when r > λ. This justify the application
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of the Lagrangian stochastic model described in §3.3 for particle relative
dispersion.

It is well-known that the kinematic viscosity of water is ν =
10−2 cm2 s−1 = 8.64 · 10−8 km2 d−1, then with ν and ε it possible to es-
timate Kolmogorov scales as follows:

η ≡ (ν3/ε)1/4 = 4 · 10−6 km = 0.4 cm ,

uη ≡ (ε ν)1/4 = 2.15 · 10−2 kmd−1 = 2.49 · 10−2 cm s−1 ,

τη ≡ (ν/ε)1/2 = 1.86 · 10−4 d ≃ 16 s .

When the Kolmogorov lengthscale η and the Eulerian lengthscale λ are
known, the Reynolds number of process under consideration can be esti-
mated. In fact, from definition Re = σλ/ν, it turns out that λ/η = Re3/4
and then for the present case Re = 2.6 ·108, which is in agreement with Re
for ocean turbulence.

Table 1. List of simulated cases and parameter values.

label (x0, y0) N part. ∆t σ2 ε C0 CK

(km) (d) (km2d−2) (km2d−3)

A1 (0,50)
A2 (0,0)

A3 |U| = |U|(B2) 400 3 · 10−5 7.47 2.49 6 2
B1 (0,50)
B2 (0,0)

4.2. Numerical results

4.2.1. Case A1

The oscillating motion of the meandering jet, see Fig. 4.2.1(a), causes
oscillations also to the enlarging of the oil spill, see Figs. 4.2.1(b,c,d). In
particular, the two maxima in Fig. 4.2.1(d) at t ≃ 6 d and t ≃ 8 d correspond
to the maximum of ψyy, see Fig. 4.2.1, in (x ≃ 500 km, y ∈ [−50, 0] km) and
(x ≃ 700 km, y ∈ [0,+50] km), respectively. Finally, at t ≃ 9 d the oil spill is
moving in a zone where the gradient of U is maximum and than it is going
towards a zone with ψyy ≃ 0, which explains the decreasing of the curve in
Fig. 4.2.1(d).

The curve plotted in Fig. 4.2.1(c) shows maxima and minima in phase
opposition with respect to Fig. 4.2.1(d). This fact can be proved analytically
by calculation of gradient of U in x where derivatives of Acos(kx) and
k2A2 sin2(kx) appear.
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Fig. 1. Case A1: (a) centre of mass trajectory and particles positions at five different
instants, (b) relative separation variance, (c) relative separation variance in x-direction,
(d) relative separation variance in y-direction.
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4.2.2. Case A2

Looking to the meandering of stream function in Fig. 4.2.2(a), the en-
larging of the oil spill in the y-direction is reducing when particles approach
the minimum around x ≃ 200m. In fact, in the plot shown in Fig. 4.2.2(d)
a minimum appears at t ≃ 6 d. However, at t ≃ 7.5 d the number of uncor-
related particles is so large that, since some of them are moving towards
North, the enlarging of the oil spill in the y-direction strongly increases.

4.2.3. Case B1

Looking at Fig. 4.2.3(a), a larger advection velocity than in the case A
spreads the oil spill along the meandering jet more than in the case A, see
Fig. 4.2.1. This fact can be re-view in the faster oscillating motion shown
in Fig. 4.2.3(d) with respect to Fig. 4.2.1(d). The stronger average velocity
field advects particles through an higher number of tops and bottoms of
the meandering jet. The explanation of maxima and minima which relates
Figs. 4.2.3(a,d) is the same as for Figs. 4.2.1(a,d).

4.2.4. Case B2

The curve plotted in Fig. 4.2.4(d) shown a maximum at t̃ ≃ 7 d and
a minimum at t̃ ≃ 8.5 d, which have correspondence in Fig. 4.2.4(a) in
(x ≃ 250 km, y ≃ −70 km), where ψyy is maximum, and (x̃ ≃ 300 km, y ≃
−50 km), where ψyy ≃ 0, respectively.

4.3. Case A3

This case consider a release in the average velocity field labeled A in
a source point such that the initial value of |U| is the same as in the case
B2. The aim of this simulation is to study the differences due to different
velocity gradient. In particular the gradient of case A is one half the gra-
dient of case B. Comparing plots of A3 and B2 several analogies appear
in the motion of centre of mass, in the enlarging of the oil spill and in the
curves of particle separation variances. In particular, looking to Figs. 4.3(b)
and 4.2.4(b), the separation variance of case A3 turns out to be one half
than in the case A, as it was expected. However, only the x-component of
separation variance emerges to be halfed, see Figs. 4.3(c) and 4.2.4(c). For
what concern separation in y-direction, it occurs a weak delay that shifts
forward maxima and minima, which are decreased around 20% except at
t = 9d that is strongly lower, see Figs. 4.3(d) and 4.2.4(d).
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Fig. 2. Case A2: the same as in Fig. 4.2.1
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Fig. 3. Case B1: the same as in Fig. 4.2.1
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Fig. 4. Case B2: the same as in Fig. 4.2.1
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Fig. 5. Case A3: the same as in Fig. 4.2.1
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5. Conclusion.

A Lagrangian stochastic model to simulate turbulent dispersion of oil
spills on ocean surface is formulated. The oil spills are assumed as non-
reacting passive tracers. The model includes both large and small scale
turbulence. Large scale motion, which drives the centre of mass, is assumed
in the analytical form proposed by A.S. Bower for meandering jet in the
Gulf Stream [4]. Small scale motion is constructed assuming homogeneous,
stationary and isotropic turbulence, independent of the large scale motion,
for particle separation less than both the Eulerian and the average velocity
gradient lenghtscales. In this range particles are correlated and the La-
grangian stochastic process developed in Ref. [5] is adopted. When particle
separation is larger than Eulerian lenghtscale, such that the motion of par-
ticle is statistically independent and the large scale average velocity field is
not negligible, particle trajectories are simulated by the sum of the average
velocity field and an Ornstein–Uhlenbeck stochastic process.

Two case studies are considered which differ in respect of the maximum
velocity. The ‘faster’ field stronger advects the centre of mass as well as it
generates a larger particle separation variance as a consequence of an higher
velocity gradient.

Comparison between releases from the centre and the boundary of the
meandering jet are also done. In the first case it emerges that when particles
are independent they spread around the centre of mass but travelling to
zone that obligatory have a less velocity intensity, as a consequence a tail
of tracers delayed is build. On the contrary, in the second case, particles are
dispersed both forward and backward to the centre of mass and then the
trajectory is splitted between a faster part, towards North, and a slower
part towards South, generating a stirring North-East South-West of the oil
spill. Comparing both releases for the same velocity field, an higher particle
separation variance occurs for boundary releases and this can be due to the
different intensity of the velocity gradient in different zones.

The work done suggests for further development the quantitative anal-
ysis of the relationship between the gradient of the large scale velocity field
and the small scale transverse particle separation variance. Moreover, a
similar analysis can be performed for a stream function ables to reproduce
a large scale velocity field with recirculation.
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