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Summary. In molecular spectroscopy and atmospheric radiative transfer, the combined effects of
Doppler and pressure broadenings lead to the Voigt profile function, which turns out to be the convo-
lution of the Gaussian (due to the Doppler broadening) and the Lorentzian (due to the pressure broad-
ening) distributions. Here we are interested to study the Voigt profile function when the widths are not
constant but depending on a scale-factor with a power law. Since in probability theory the Gaussian and
the Lorentzian distributions are known to belong to the class of symmetric Lévy stable distributions, in
this framework we propose to generalize the Voigt function by adopting the convolution of two arbitrary
symmetric Lévy distributions. Moreover, we provide the integro-differential equations with respect to
the scale-factor satisfied by the generalized Voigt profiles. These evolution equations can be interpreted
as space-fractional diffusion equations of double order.
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1 Introduction

In the present paper some mathematical aspects of the Voigt profile are discussed. This func-
tion emerges as a profile spectrum in molecular spectroscopyand atmospheric radiative trans-
fer due to the combined effects of Doppler and pressure broadenings and it turns out to be the
convolution of the Gaussian (due to the Doppler broadening)and the Lorentzian (due to the
pressure broadening) probability densities.

Noting that the Gaussian and the Lorentzian distributions belong to the symmetric class
of Lévy stable distributions, after a short review of classical and new representations, we
introduce a probabilistic generalization of the Voigt profile in terms of the Lévy distributions.

Generally, the widths of distributions are assumed with a constant value fixed by the
process. Here we are interested to study the ordinary and generalized Voigt profile function
when the density widths are not constant but depending on a scale factor with a power law.

Physically, the one-dimensional variable of the Voigt function is a wavenumber (or fre-
quency) and then this permits to take into account spatial inhomogeneity or temporal non-
stationarity when the scale factor is the distance from an origin or the elapsed time, respec-
tively. To this purpose, we derive the integro-differential equations in respect of the scale
factor satisfied by the ordinary and the generalized Voigt profiles. These integro-differential
equations can be classified as space-fractional diffusion equations of double order. A further
generalization can be obtained considering space-fractional diffusion equations of distributed
order [4, 43].

The rest of the paper is organized as follows. In section 2 thebasic definitions of the
Voigt profile and some classical and recent representationsare given. In section 3 the con-
nection with the Lévy stable distribution class is introduced and in section 4 the ordinary and
the generalized Voigt functions are analyzed considering the scale factor and the associated
integro-differential equations are introduced. In section 5 the limits of low and high scale
factor values are considered. Finally, in section 6 the summary and conclusions are given.

2 The Voigt profile function

2.1 Literature

The computation of the Voigt profile is an old issue in literature and many efforts are di-
rected to evaluate it with different techniques. In fact, ananalytical explicit representation
does not exist and it can be considered a special function itself. It turns out to be related
to a number of special function as, for example, the confluenthypergeometric function, the
complex complementary error function, the Dawson function, the parabolic cylinder func-
tion and the Whittaker function, see e.g. [3, 10, 11, 17, 40, 41, 50] and also to the plasma
dispersion function [12]. Its mathematical properties andnumerical algorithms are largely
studied, e.g. [2, 3, 5, 6, 9, 14, 15, 16, 18, 24, 30, 32, 35, 37, 38, 42, 46, 50, 51, 52, 53] and
[1, 7, 8, 21, 22, 23, 27, 28, 29, 36, 40, 41, 48], respectively,and references therein.

It remains up to nowadays a mathematically and computationally interesting problem
because computing profiles with high accuracy is still an expensive task.
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2.2 Basic definitions

The GaussianG(x) and the LorentzianN(x) profiles are defined as

G(x) =
1√
πωG

exp

[
−

(
x

ωG

)2
]

, N(x) =
1

πωL

ω2
L

x2 + ω2
L

, (1)

whereωG andωL are the corresponding widths. From their convolution we have the ordinary
Voigt profileV (x)

V (x) =

Z +∞

−∞
N(x− ξ)G(ξ)dξ =

ωL/ωG

π3/2

Z +∞

−∞

e−(ξ/ωG)2

(x− ξ)2 + ω2
L

dξ . (2)

The main parameter of the Voigt function is the weight-parametera defined as

a =
ωL

ωG
. (3)

The weight-parametera is the ratio of the Lorentzian to Gaussian width and then a measure of
the relative importance between their influence on the properties of the process. Generally, the
a < 1 case is important in astrophysics whilea > 1 in spectroscopy of cold and dense plasmas
[6]. In particular, two limits can be considered:i) a → 0; ii) a → ∞. In the first case, the
Lorentzian contribution is negligible in respect of the Gaussian one, in other words,ωL → 0
so that the Lorentzian profile tends to a Diracδ-function and the Voigt profile to a Gaussian
one. In the second case, the Gaussian contribution is negligible, ωG → 0, and the Gaussian
profile tends to a Diracδ-function and the Voigt function to a Lorentzian distribution.

Let f̂ (κ) be the characteristic function, or the Fourier transform, of f (x) so that

f̂ (κ) =
Z +∞

−∞
e+iκx f (x)dx , f (x) =

1
2π

Z +∞

−∞
e−iκx f̂ (κ)dκ , (4)

then
V̂ (κ) = Ĝ(κ)N̂(κ) = e−ω2

Gκ2/4e−ωL|κ| , (5)

and

V (x) =
1
2π

Z +∞

−∞
e−iκxe−ω2

Gκ2/4−ωL|κ| dκ =
1
π

Z +∞

0
e−ωLκ−ω2

Gκ2/4cos(κx)dκ . (6)

2.3 The differential equations of the Voigt profile function

Consider dimensionless variablex → x/ωG, the Voigt function can be re-arranged in the form

V (x) =
1√

πωG
H(x) , H(x,a) =

a
π

Z +∞

−∞

e−ξ2

(x− ξ)2+ a2 dξ , (7)

and from (6) we have

H(x,a) =
1√
π

Z +∞

0
e−aξ−ξ2/4cos(xξ)dξ . (8)
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The differential equations of the Voigt profile function (7)were stated in 1978 by T. Andersen
[2]. It is possible to show that the following three differential equations

∂2H
∂a2 +

∂2H
∂x2 = 0, (9)

∂2H
∂a2 −4a

∂H
∂a

+(4a2+4x2−2)H =
4a√

π
, (10)

∂2H
∂x2 +4x

∂H
∂x

+(4a2+4x2+2)H =
4a√

π
, (11)

are solved by substitution using (8). The combination of (9-11) yields the first-order partial
differential equation

x
∂H
∂x

−a
∂H
∂a

+2(a2+ x2)H =
2a√

π
. (12)

2.4 Further representations

The Voigt function has not yet an analytical explicit representation and several alternative
representations of (2) were given in literature, e.g. formula (8). The following classical rep-
resentations can be found in [3, 40, 41, 50].

Combiningx anda in the complex variablez = x− ia, the functionH(x,a) (7) is

H(x,a) = Re[W (z)] , W (z) =
i
π

Z +∞

−∞

e−ξ2

z− ξ
dξ , (13)

whereW (z) is strongly related to the plasma dispersion function [12].Moreover, the relation
of W (z) with the complex complementary error function erfc{−iz} and the Dawson function
F(z) = e−z2 R z

0 eξ2
dξ can be used to obtain

H(x,a) = Re[W(z)] , W (z) = e−z2
erfc{−iz} , a > 0, (14)

H(x,a) = Re[W (z)] , W (z) = e−z2
+

2i√
π

F(z) . (15)

Further representations are given in terms of special functions, see for example the one
involving the confluent hypergeometric function1F1 [17, 11]

K(x,y) = e(y2−x2)cos(2xy)− 1√
π

{
(y + ix)1F1(1;3/2;(y + ix)2)+

(y− ix)1F1(1;3/2;(y− ix)2)
}

, (16)

and others involving the Whittaker functionWk,m, the erfc−function and the parabolic cylin-
der function [50, formulae (17,13,16)]

K(x,y) =
1

2
√

π

{
(y− ix)−1/2e(y−ix)2/2W−1/4,−1/4((y− ix)2)+

(y + ix)−1/2e(y+ix)2/2W−1/4,−1/4((y + ix)2)
}

, (17)
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K(x,y) =
1
2

{
e(y−ix)2

erfc(y− ix)+e(y+ix)2
erfc(y+ ix)

}
, (18)

K(x,y) =
e(y2−x2)/2
√

2π

{
e−ixy D−1[

√
2(y− ix)]+e+ixy D−1[

√
2(y + ix)]

}
. (19)

More recent representations are those derived in 2001 by Di Roccoet al.[6] and in 2007
by Zaghloul [51] “completing” a previous formula publishedin 2005 by Roston & Obaid
[35]. Di Roccoet al. [6] derived

H(x) =
∞

∑
n=0

(−1)n ×
{

1
Γ(n +1)

M

(
2n +1

2
,
1
2

;a2
)
−

2a

Γ
(

2n+1
2

)M

(
n +1,

3
2

;a2
)}

x2n , (20)

whereM(α,β;z) is the confluent hypergeometric function. Roston & Obaid [35] derived the
following representation

H(x,a) = [1−erf(a)]e(−x2+a2) cos(2xa)−
2e−x2

√
π

[
cos(2xa)

Z x

0
eξ2

sin(2ξa)dξ−sin(2xa)

Z x

0
eξ2

cos(2ξa)dξ
]

,

that was re-written as a single proper integral with a dampedsine integrand by Zaghloul [51]

H(x,a) = [1−erf(a)]e(−x2+a2) cos(2xa)+

2√
π

Z x

0
e(−x2+ξ2) sin[2a(x− ξ)]dξ . (21)

Recently, He & Zhang [16] claimed to have derived an exact calculation of the Voigt profile
that is proportional to the product of an exponential and a cosine function. However this
representation assumes negative value in contrast with thenon negative character of the Voigt
function. For this reason that result has to be considered wrong. A different and less direct
argoument is used in [53] to show the falsity of He & Zhang claim.

3 The Voigt profile function generalization via Lévy stable distributions

3.1 The probabilistic generalization of the Voigt profile function

It is well known that ifX1 andX2 are two independent random variables with probability
density function (PDF)q1 andq2, respectively, then the PDFp(z) of the random variable
Z = X1 + X2 is given by the convolution integral

p(z) =
Z +∞

−∞
q1(z− x2)q2(x2)dx2 . (22)

From (2) and (22), the Voigt profile can be seen as the resulting PDF of the sum of two
independent random variables, one with Gaussian PDF and theother with Lorentzian PDF.
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The Voigt function has been generalized in literature in different ways, e.g. on physical
ground considering self-broadening [33], or as a mathematical generalization: in [44, 45]
the cosine function in (6) is replaced by the Bessel functionand by the Wright function,
respectively, in [19] the generalization in [44, 45] is further generalized to multi-variables, in
[37] the integrand function in formula (6) is multiplied by apolynomial.

In this paper we propose a probabilistic generalization in the framework of Lévy distri-
butions. It is well known that the Gaussian and the Lorentzian distributions are two special
cases of the class{Lα(x)} of the symmetric Lévy stable distributions, whereα, 0< α ≤ 2, is
called characteristic exponent. A straightforward generalization in the probabilistic sense is
then introduced as the sum of two independent random variables with symmetric stable den-
sities. Mathematically, this corresponds to the convolution of two arbitrary symmetric Lévy
densities of characteristic exponentsα1 andα2. Denoting withV (x) the generalized Voigt
function, without considering any width factor, its integral representation and its characteris-

tic functionV̂ (κ) are

V (x) =

Z +∞

−∞
Lα1(x− ξ)Lα2(ξ)dξ , V̂ (κ) = e−|κ|α1−|κ|α2 . (23)

The plots ofV (x) are shown in Fig. 1 for different pairs of(α1,α2).
Looking at (23) a further generalization of the Voigt function can be stated. In fact, the

sum of two addenda, in the argoument of the exponential function, can be replace by a sum
of an arbitrary number of addenda each of them with a weightw j, j = 1, . . . ,n, i.e.

V̂ d(κ) = e−∑n
j=1 w j |κ|α j

,

or by a continuum distribution with a weight functionw(α)

V̂ c(κ) = e−
R 2
0 w(α)|κ|αdα . (24)

4 The scale factor and the parametric equations

4.1 From the weight-parameter to the scale factor

In the previous sections the widthsωG and ωL are considered constants and the weight-
parametera fixed. However, differently from previous papers on the topic, we would like
to know what happens when the widthsωG andωL changes in space or time with a power
law in respect of a scale factor. This is the inhomogeneous ornot stationary case if the scale
factor corresponds to the distance from an origin or the elapsed time, respectively. Conversely,
constant values of widths can be considered for homogeneousand stationary case. In the
present section we consider the Voigt profile in terms of a scale factorτ common for both
spatial inhomogeneity and temporal non-stationarity.

It is well known that the Lévy density functionsLα(x,τ) are the fundamental solutions of
the space-fractional diffusion equation, see e.g. [4, 13, 25, 43, 47],

∂Lα(x,τ)
∂τ

= xDαLα(x,τ) , Lα(x,0) = δ(x) , 0 < α ≤ 2, (25)
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Fig. 1 Plots of the generalized Voigt functionV (x), for symmetry reasons on the positive semi-axis,
for the pairs(α1,α2) = {(0.5,1),(0.5,1.5),(0.5,2),(1,1.5),(1,2),(1.5,2)}.

wherexDα is the Riesz space-fractional derivative of orderα. The pseudo-differential opera-
tor xDα is defined in terms of its Fourier transform−|κ|α. The Fourier transform ofxDα f (x)
is−|κ|α f̂ (κ), and it admits the explicit representation

xDα f (x) =






Γ(1+ α)

π
sin

(απ
2

)Z +∞

0

f (x + ξ)−2 f (x)+ f (x− ξ)

ξ1+α dξ , α 6= 1,

−1
π

d
dx

Z +∞

−∞

f (ξ)

x− ξ
dξ , α = 1,

(26)
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and the limitxDα f (x) = d2 f/dx2 whenα = 2. The reader acquainted with integral transforms
can recognize thatxD1 f (x) is related to the Hilbert transform. For more details on fractional
derivatives the interested reader is referred to texts on fractional calculus, see e.g. [20, 34, 39].

Solutions of (25) have the following power law scaling:

Lα(x,τ) = τ−1/αLα

(
x

τ1/α

)
. (27)

We observe that the processes defined in (27) are self-similar and they obey to the same power
law scaling for any value of the scale factorτ. In particular, forα = 2 andα = 1 the Gaussian
and the Lorentzian densities are recovered, respectively,and from (27) we have that

ωG ∝ τ1/2 and ωL ∝ τ . (28)

4.2 The ordinary Voigt function case

From scaling (27), the ordinary Voigt function is

V (x,τ) =

Z +∞

−∞
L1(x− ξ,τ)L2(ξ,τ)dξ = τ−3/2

Z +∞

−∞
N

(
x− ξ

τ

)
G

(
ξ

τ1/2

)
dξ .

In this case, from (4), the characteristic function ofV (x,τ) is

V̂ (κ,τ) = e−|κ|τ−κ2τ , V̂ (κ,0) = 1. (29)

It is possible to show that the Voigt functionV (x,τ) is the solution of the following integro-
differential equation

∂V
∂τ

=
∂2V
∂x2 + xD1V (x,τ) , V (x,0) = δ(x) , (30)

or in explicit form

∂V
∂τ

=
∂2V
∂x2 − 1

π
∂
∂x

Z +∞

−∞

V (ξ,τ)
x− ξ

dξ , V (x,0) = δ(x) .

In fact, applying the Fourier transform (4), Eq. (30) becomes

∂V̂
∂τ

= −κ2V̂ (κ,τ)−|κ|V̂(κ,τ) ,

which is solved by (29).

4.3 The generalized Voigt function case

Following scaling (27), the generalized Voigt function is

V (x,τ) = τ−1/α1−1/α2

Z +∞

−∞
Lα1

(
x− ξ
τ1/α1

)
Lα2

(
ξ

τ1/α2

)
dξ , (31)
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and its characteristic function is

V̂ (κ,τ) = e−|κ|α1τ−|κ|α2τ , V̂ (κ,0) = 1. (32)

In this case, it possible to show that formula (31) is the solution of the following integro-
differential equation

∂V
∂τ

= xDα1V (x,τ)+ xDα2V (x,τ) , V (x,0) = δ(x) . (33)

In fact, after the Fourier transformation, Eq. (33) becomes

∂V̂
∂τ

= −|κ|α1V̂ (κ,τ)−|κ|α2V̂ (κ,τ) ,

which is solved by (32). Whenα1 = 1 andα2 = 2 the integro-differential equation (33)
reduces to Eq. (30) and the ordinary Voigt function is recovered, i.e.V (x,τ) ≡ V (x,τ). The
evolution ofV (x,τ) for different pairs of(α1,α2) with τ = 0.1,1,10 is shown in Fig. 2.

The integro-differential equation (33), as (30), can be classified asspace-fractional diffu-
sion equation of double order. The generalization stated in (24) is the solution of the follow-
ing integro-differential equation, which results to be thespace-fractional diffusion equation
of distributed order [4, 43],

∂V̂
∂t

=
Z 2

0
xDα
V̂ (x,τ)w(α)dα , V (x,0) = δ(x) . (34)

Applying the Fourier transformation (4) in (34), the characteristic function of the solution of
(34) is

V̂ (κ,τ) = e−τ
R 2
0 |κ|α w(α)dα , V̂ (κ,0) = 1.

Equation (33) is recovered whenw(α) = δ(α−α1)+ δ(α−α2) and Eq. (30) whenw(α) =
δ(α−1)+ δ(α−2).

5 The asymptotic scaling laws for low and high scale-factor

The Voigt (2) and the generalized Voigt (23) profiles are derived from the convolutions of two
self-similar processes with different scaling laws and, asa consequence, the similarity is lost.
However, we ask which are the scaling laws of the Voigt functions in the limits of low and
high values of the scale-factorτ.

Since for Lévy stable densities withα 6= 2 the mean square displacement diverges, the
same occurs for the ordinary and the generalized Voigt functions then, to analyze the scaling
laws whenτ → 0 andτ → ∞, the variance〈x2〉 cannot be used. However, West & Seshadri
[49] introduced for the Lévy densitiesLα(x) theq-th fractional modulo moment〈|xq|〉 when
q < α. Then, the characteristic scaling of Lévy process can be study by mean the quantity
〈|xq|〉1/q. In this respect, Zolotarev [54] derived the following formula that holds for a generic
probability densityf (x)

〈|x|q〉 =
2
π

Γ(1+ q)sin
(πq

2

)Z +∞

0
(1−Re[ f̂ (κ)])κ−q−1dκ .
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Fig. 2 The evolution of the generalized Voigt functionV (x,τ), for symmetry reasons on the positive
semi-axis, for the pairs(α1,α2) = {(0.5,2),(1.5,2),(0.5,1.5),(1,1.5)} with τ = 0.1,1,10.

In our casef̂ (κ) is replaced byV̂ (κ,τ) andq < min{α1,α2}. In papers [4, 43] the limits
(τ → 0,τ → ∞) are computed using the Zolotarev formula for the case of convolution of two
Lévy densities.

Here, in order to study the asymptotic scaling laws, the Mellin transform is used. In fact

〈|x|q〉 = 2
Z +∞

0
xq
V (x,τ)dx = 2V ∗(q +1,τ) , 0 < q < min{α1,α2} , (35)

whereV ∗(s) is the Mellin transform ofV (x), x > 0, defined as [31]

V
∗(s) =

Z +∞

0
V (x)xs−1 dx , V (x) =

1
2πi

Z c+∞i

c−∞i
V

∗(s)x−s ds . (36)
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Without loss in generality, let us stateα1 < α2. Starting from (23) and following [26, 30], the
Mellin-Barnes integral representation of the generalizedVoigt functionV (x) is

V (x,τ) =
τ−1/α2

α2π
1

2πi

Z
L0

1
2πi

Z
L1

Γ(s0)Γ(s1)Γ
(

1− s0−α1s1

α2

)

× τs0/α2+(α1/α2−1)s1 cos(s0π/2)x−s0 ds0ds1 . (37)

Hence its Mellin transform is

V
∗(s1,τ) =

τ(s0−1)/α2

α2π
Γ(s0)cos(s0π/2)

× 1
2πi

Z
L1

Γ(s1)Γ
(

1− s0−α1s1

α2

)
τ(α1/α2−1)s1ds1 , (38)

and finally,

〈|x|q〉 = 2V ∗(q +1,τ)

= −2τq/α2

α2π
Γ(q +1)sin(qπ/2)

1
2πi

Z
L1

Γ(s1)Γ
(−q−α1s1

α2

)
τ(α1/α2−1)s1ds1 . (39)

Applying the residue theorem toΓ
(
−q−α1s1

α2

)
, we obtain the convergent series forτ → ∞,

〈|x|q〉 = −2τq/α1

α1π
Γ(q +1)sin(qπ/2)

∞

∑
n=0

(−1)n

n!
Γ

(
α2n−q

α1

)
τ−n(α2/α1−1) . (40)

Applying the residue theorem toΓ(s1), we obtain the convergent series forτ → 0,

〈|x|q〉 = −2τq/α2

α2π
Γ(q +1)sin(qπ/2)

∞

∑
n=0

(−1)n

n!
Γ

(
α1n−q

α2

)
τn(1−α1/α2) . (41)

Then the two limits under consideration give

{
〈xq〉1/q ∝ τ1/α2 , τ → 0;
〈xq〉1/q ∝ τ1/α1 , τ → ∞ .

(42)

To conclude, the ordinary and generalized Voigt profile functions are not self-similar and
their power law scaling depends on the limit of the scale factor considered. This occurs even
if the two Lévy densities convoluted are self-similar. In the limit τ → 0, the corresponding
scaling law of the generalized Voigt profile is governed by the Lévy densities with a higher
value of the characteristic exponent, while in the limitτ → ∞ by that with a lower value. In
particular, for the ordinary Voigt profile(α1 = 1,α2 = 2) the process scales asτ1/2 andτ for
low and high values of the scale factor, respectively.

This means that if the power law represent inhomogeneity,ornot stationarity, the resulting
profile is approximated by a Gaussian for small distances from an origin, or small elapsed
times, and it is approximated by a Lorentzian for large distances, or large elapsed times. This
result is consistent with the usual limitsa → 0 anda → ∞, see Fig. 1.
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6 Conclusion

In the present paper we have considered the Voigt profile function. It is an interesting function
that emerges from molecular spectroscopy and atmospheric radiative transfer as the combined
effects of Doppler and pressure broadenings. The Voigt function is the convolution of the
Gaussian (due to the Doppler broadening) and the Lorentzian(due to the pressure broadening)
densities.

The Gaussian and the Lorentzian densities belong to the symmetric class of the Lévy
stable densities so a straightforward generalization of their convolution is obtained by the
convolution of two arbitrary symmetric Lévy densities.

Generally, Voigt profile characteristics are studied with respect to a weight-parametera
that is the ratio of Lorentzian to Gaussian widths,a = ωL/ωG, and it is assumed to be a
constant property of the process. Differently, here we haveconsidered both widths depend-
ing on a scale factorτ that can be representative of inhomogeneity or not stationarity. We
have introduced parametric integro-differential equations for the ordinary and the generalized
Voigt functions. These integro-differential equations can be classified asspace-fractional dif-
fusion equations of double order because they include two Riesz space-fractional derivatives.
Further generalization can be obtained consideringspace-fractional diffusion equations of
distributed order.

Finally, the limits of the Voigt function for low and high values of the scale factor are
considered. In this respect, the Voigt function turns out tobe not self similar, even if it is
expressed as the convolution of two self similar Lévy processes. In fact, the Voigt profile
has not a single power law scaling for each values of the scalefactor, as it is for self similar
processes, but its scaling law is governed by the Lévy density with the higher value of the
characteristic exponent whenτ → 0 and by the Lévy density with the lower value of the
characteristic exponent whenτ → ∞. In the ordinary case, it means by the Guassian density
whenτ → 0 and by the Lorentzian density whenτ → ∞. These results are not in opposition
with previous studied limitsa → 0 anda → ∞, but here they are obtained as consequence
of two different power law scalings for the Doppler and the pressure broadenings and not by
variation of the relative weight of density widths.
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