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Summary. In molecular spectroscopy and atmospheric radiative feanthe combined effects of
Doppler and pressure broadenings lead to the Voigt profiletfan, which turns out to be the convo-
lution of the Gaussian (due to the Doppler broadening) aad trentzian (due to the pressure broad-
ening) distributions. Here we are interested to study thgt\arofile function when the widths are not
constant but depending on a scale-factor with a power laveeSh probability theory the Gaussian and
the Lorentzian distributions are known to belong to theslafssymmetric Lévy stable distributions, in
this framework we propose to generalize the Voigt functipmatiopting the convolution of two arbitrary
symmetric Lévy distributions. Moreover, we provide théegro-differential equations with respect to
the scale-factor satisfied by the generalized Voigt profiiégse evolution equations can be interpreted
as space-fractional diffusion equations of double order.
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1 Introduction

In the present paper some mathematical aspects of the Voififepare discussed. This func-
tion emerges as a profile spectrum in molecular spectrosmoghgtmospheric radiative trans-
fer due to the combined effects of Doppler and pressure lerdagds and it turns out to be the
convolution of the Gaussian (due to the Doppler broaderang)the Lorentzian (due to the
pressure broadening) probability densities.

Noting that the Gaussian and the Lorentzian distributiaierig to the symmetric class
of Lévy stable distributions, after a short review of claasand new representations, we
introduce a probabilistic generalization of the Voigt pieiin terms of the Lévy distributions.

Generally, the widths of distributions are assumed with astant value fixed by the
process. Here we are interested to study the ordinary aretglered Voigt profile function
when the density widths are not constant but depending oala fctor with a power law.

Physically, the one-dimensional variable of the Voigt fiimic is a wavenumber (or fre-
quency) and then this permits to take into account spati@ritogeneity or temporal non-
stationarity when the scale factor is the distance from &giroor the elapsed time, respec-
tively. To this purpose, we derive the integro-differehguations in respect of the scale
factor satisfied by the ordinary and the generalized Voigfiles. These integro-differential
equations can be classified as space-fractional diffusjoatéons of double order. A further
generalization can be obtained considering space-fragdtaiffusion equations of distributed
order [4, 43].

The rest of the paper is organized as follows. In section 2bts@c definitions of the
Voigt profile and some classical and recent representatiomgiven. In section 3 the con-
nection with the Lévy stable distribution class is intredd and in section 4 the ordinary and
the generalized Voigt functions are analyzed considetiegstale factor and the associated
integro-differential equations are introduced. In sattiothe limits of low and high scale
factor values are considered. Finally, in section 6 the sargrand conclusions are given.

2 The Voigt profile function
2.1 Literature

The computation of the Voigt profile is an old issue in literat and many efforts are di-
rected to evaluate it with different techniques. In fact,aamalytical explicit representation
does not exist and it can be considered a special functieff.its turns out to be related
to a number of special function as, for example, the conflagpergeometric function, the
complex complementary error function, the Dawson fungttbe parabolic cylinder func-
tion and the Whittaker function, see e.g. [3, 10, 11, 17, 40,50] and also to the plasma
dispersion function [12]. Its mathematical properties andherical algorithms are largely
studied, e.g. [2, 3, 5, 6, 9, 14, 15, 16, 18, 24, 30, 32, 35, 8743, 46, 50, 51, 52, 53] and
[1,7,8,21,22,23,27, 28, 29, 36, 40, 41, 48], respectiaiy references therein.
It remains up to nowadays a mathematically and computdtjoimderesting problem

because computing profiles with high accuracy is still areesjve task.
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2.2 Basic definitions

The Gaussias(x) and the Lorentziahl(x) profiles are defined as

2
G(X):fﬁexp[— (%) ] ’ N(X):%%a (1)

wherews andwy are the corresponding widths. From their convolution weettae ordinary
\oigt profileV (x)
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The main parameter of the Voigt function is the weight-pagtera defined as
L
o 3

The weight-parametexis the ratio of the Lorentzian to Gaussian width and then asoreeof
the relative importance between their influence on the ptgsof the process. Generally, the
a< 1 caseis important in astrophysics whale- 1 in spectroscopy of cold and dense plasmas
[6]. In particular, two limits can be considered:a — 0; ii) a — . In the first case, the
Lorentzian contribution is negligible in respect of the Gsian one, in other wordey. — 0

so that the Lorentzian profile tends to a Di@&€unction and the Voigt profile to a Gaussian
one. In the second case, the Gaussian contribution is iggligoc — 0, and the Gaussian
profile tends to a Dirad-function and the Voigt function to a Lorentzian distritarti

~

Let f (k) be the characteristic function, or the Fourier transforfrf,(®) so that

Y +00 . +00 N
= [ Te i, (0= [ ek, ()
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V(K) = G)N(K) = e 9&"/4g okl 5)
and
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(X) = ZT[/W e e dk = =8 e cogKx)dK. (6)

2.3 The differential equations of the Voigt profile function

Consider dimensionless variabde- x/wg, the Voigt function can be re-arranged in the form

P —&2
V(x):fﬁH(x), H(x,a):%/; mdz, @)

and from (6) we have

H(x,a) = %_[ /O+oo e % E/4cogxE) dE . (8)
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The differential equations of the Voigt profile function (¥¢re stated in 1978 by T. Andersen
[2]. Itis possible to show that the following three diffetihequations

0°H  0°H

o2 T2 =0 ©)
0°H  oH 4a
55 ~dag+ (4 + 4~ 2)H = NS (10)
°H  oH 4a
W-|—4x&—|—(4<’:’t2-|-4X2—|-2)H = Vs (11)

are solved by substitution using (8). The combination ol {9ields the first-order partial

differential equation

OH oH 2 2., 2a
xaxfaanrZ(a +X)H—\/ﬁ. (12)

2.4 Further representations

The Voigt function has not yet an analytical explicit renestion and several alternative
representations of (2) were given in literature, e.g. fdan{8). The following classical rep-
resentations can be found in [3, 40, 41, 50].
Combiningx anda in the complex variable = x— ia, the functionH (x,a) (7) is
H ReW (@], W= [ g 13

x,a) = Re[W(z z)=-— —

(ca)=ReW(z]. W@=r [ . (13)
whereW(z) is strongly related to the plasma dispersion function [M&reover, the relation
of W(z) with the complex complementary error function drfdz} and the Dawson function

F(2) = e 2 [2e8°dE can be used to obtain

H(x,a) = ReW(2)], W(z) =e Zerfc[—iz}, a>0, (14)
B 2 2
H(x,a) =ReW(z)], W(z) =€ + F[F(z). (15)

Further representations are given in terms of special fomst see for example the one
involving the confluent hypergeometric functigify [17, 11]

K(x,y) = e cog2xy) — \;T {(y+ix) 1F1(1;3/2;(y+i%)?) +

(y—ix)1F1(1;3/2;(y—ix)?)} , (16)

and others involving the Whittaker functid¥ m, the erfe-function and the parabolic cylin-
der function [50, formulae (17,13,16)]

1 o i .
K(x,y) = m{(y— ix) /2l IX)2/2W71/4,71/4((y— iX)?) +

(i) 22 (v in?) ) (17)
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K(cy) = 5 {& " erfaty —ix) + € *erfaty +ix) } (18)
)2 , . ,
K(ey) = = (e ™D sV~ X+ ™DV + ]} (19)

More recent representations are those derived in 2001 byobédt al.[6] and in 2007
by Zaghloul [51] “completing” a previous formula published2005 by Roston & Obaid
[35]. Di Roccoet al. [6] derived

e ni)(l)n ) {F(n1+ o <2n;1’%;a2> -

2a 3. 5 5
@M (n+1,§,a)}x”, (20)

whereM(a, 3;z) is the confluent hypergeometric function. Roston & Obaid [B&rived the
following representation

H(xa) = [1— erf(a)] ") cog2xa) —
2e%
a3

that was re-written as a single proper integral with a dangieelintegrand by Zaghloul [51]

[cos(Zxa) /0 s sin(2¢a) d& — sin(2xa) /0 s cog2¢a) di} :

H(xa) = [1—erf(a)] € X**%) cog2xa) +

2 [* e gimoax—

v /0 e sinza(x—&)dE.  (21)
Recently, He & Zhang [16] claimed to have derived an exacafutation of the Voigt profile
that is proportional to the product of an exponential and sireofunction. However this
representation assumes negative value in contrast withath@egative character of the Voigt
function. For this reason that result has to be consideremgvrA different and less direct
argoumentis used in [53] to show the falsity of He & Zhangrolai

3 The Voigt profile function generalization via Lévy stable distributions

3.1 The probabilistic generalization of the Voigt profile function

It is well known that if X; and Xz are two independent random variables with probability
density function (PDF}. andqy, respectively, then the PDp(z) of the random variable
Z = X3 + Xz is given by the convolution integral

+o0

P(2) = 01(Z— X2)02(X2) dxXz . (22)
From (2) and (22), the Voigt profile can be seen as the reguRDF of the sum of two
independent random variables, one with Gaussian PDF arattlibewith Lorentzian PDF.



6 Gianni Pagnini, Francesco Mainardi

The Voigt function has been generalized in literature ifiedlént ways, e.g. on physical
ground considering self-broadening [33], or as a mathamalatjeneralization: in [44, 45]
the cosine function in (6) is replaced by the Bessel funciod by the Wright function,
respectively, in [19] the generalization in [44, 45] is het generalized to multi-variables, in
[37] the integrand function in formula (6) is multiplied bypalynomial.

In this paper we propose a probabilistic generalizatiohaftamework of Lévy distri-
butions. It is well known that the Gaussian and the Lorentziistributions are two special
cases of the clasd_q(x)} of the symmetric Lévy stable distributions, whered < a < 2, is
called characteristic exponent. A straightforward geliwation in the probabilistic sense is
then introduced as the sum of two independent random vasaftith symmetric stable den-
sities. Mathematically, this corresponds to the convohutif two arbitrary symmetric Lévy
densities of characteristic exponentsanday. Denoting with4’ (x) the generalized Voigt
function, without considering any width factor, its integrepresentation and its characteris-

tic function¥ (k) are

V(X) = - Loy (X—&)La,(§)dE,  2(k) = e K -K"2. (23)

The plots of? (x) are shown in Fig. 1 for different pairs ¢di1, a2).

Looking at (23) a further generalization of the Voigt fureetican be stated. In fact, the
sum of two addenda, in the argoument of the exponential immotan be replace by a sum
of an arbitrary number of addenda each of them with a weighi = 1,...,n, i.e.

-~ 50 wilk| %
Va(k) = 2T

or by a continuum distribution with a weight functiarfo)

o~

Ve(K) = e JoWK[dar, (24)

4 The scale factor and the parametric equations

4.1 From the weight-parameter to the scale factor

In the previous sections the widthg and wy are considered constants and the weight-
parametema fixed. However, differently from previous papers on the ¢topve would like
to know what happens when the widttag andw. changes in space or time with a power
law in respect of a scale factor. This is the inhomogeneounsbstationary case if the scale
factor corresponds to the distance from an origin or thesgldpime, respectively. Conversely,
constant values of widths can be considered for homogersudistationary case. In the
present section we consider the Voigt profile in terms of desfeactort common for both
spatial inhomogeneity and temporal non-stationarity.

Itis well known that the Lévy density functiohs (x,T) are the fundamental solutions of
the space-fractional diffusion equation, see e.g. [4, 5343, 47],

OLq(%,T)

T = XDGLC( (XvT)a LC( (Xv 0) = B(X)a O0<a < 27 (25)
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Fig. 1 Plots of the generalized Voigt functior (x), for symmetry reasons on the positive semi-axis,
for the pairs(ay,az) = {(0.5,1),(0.5,1.5),(0.5,2),(1,1.5),(1,2),(1.5,2) }.

where,D? is the Riesz space-fractional derivative of ordeihe pseudo-differential opera-
tor D is defined in terms of its Fourier transforajk|®. The Fourier transform oD f (x)

~

is —|k|®f(k), and it admits the explicit representation

F(l;a)sin(ﬂt)/;‘”f(x+E)—2f(x)+f(x—E)dE’G#L

2 ElJr(I

DY (x) = (26)

1d > f(§) B
“rax o x-g % a=t

)
—00



8 Gianni Pagnini, Francesco Mainardi

and the limitD® f (x) = d?f /dx? whena = 2. The reader acquainted with integral transforms

can recognize thaD* f (x) is related to the Hilbert transform. For more details onticaal

derivatives the interested reader is referred to textsamtifmal calculus, see e.g. [20, 34, 39].
Solutions of (25) have the following power law scaling:

_ 1 X
La(xT) =T Y9Lq (m> : (27)

We observe that the processes defined in (27) are self-siamnitithey obey to the same power
law scaling for any value of the scale factoitn particular, fora = 2 anda = 1 the Gaussian
and the Lorentzian densities are recovered, respectaetl/from (27) we have that

ws 012 and w OT. (28)

4.2 The ordinary Voigt function case

From scaling (27), the ordinary Voigt function is

V(1) = :o Li(x—&,1)L2(&,1)dE = T73/2/+°°N (X;E) G (%) dz.

—oo T

In this case, from (4), the characteristic function/gk, 1) is

~ ~

V(K1) = e K= Gk 0)=1. (29)

It is possible to show that the Voigt functidf(x, T) is the solution of the following integro-
differential equation

NV

e WﬂDMx,r), V(x,0) =3(X), (30)

or in explicit form

o oV 19 V() B
ot ot man). g VKO=8K.
In fact, applying the Fourier transform (4), Eq. (30) beceme

oV s ~
E =—K V(K5T> - |K|V(K7T)a

which is solved by (29).

4.3 The generalized Voigt function case

Following scaling (27), the generalized Voigt function is

1oy e x—¢& 3
_ 1 1
VXT) =T /ay /0(2/7Oo Lo, ('[1/01) Lo, ('[1/0‘2) dg, (32)
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and its characteristic function is
V(K1) = e KMTKRT g 0) =1, (32)

In this case, it possible to show that formula (31) is the tofuof the following integro-
differential equation

w _
o~

In fact, after the Fourier transformation, Eq. (33) becomes

D9 (X, 1) +xD"2% (x,T), ¥ (X0)=3(X). (33)

ot

which is solved by (32). When; = 1 anday = 2 the integro-differential equation (33)
reduces to Eq. (30) and the ordinary Voigt function is recedei.e.? (x,T) =V (x,T). The
evolution of v (x, 1) for different pairs of(a,a2) with 1= 0.1,1,10 is shown in Fig. 2.

The integro-differential equation (33), as (30), can begifeed aspace-fractional diffu-
sion eguation of double order. The generalization stated in (24) is the solution of théofel
ing integro-differential equation, which results to be tpace-fractional diffusion equation
of distributed order [4, 43],

— —|K|% (K, T) — [K|%29 (K, T),

ot

Applying the Fourier transformation (4) in (34), the chaeaistic function of the solution of
(34)is

- /O ? DY (x T W(a)da, v (x.0) = 5(x). (34)

v (k,T) = e o K w@da g 0y =1,

Equation (33) is recovered whev(a) = d(a — a1) + d(a — a2) and Eq. (30) whem(a) =
o(a—1)+6(a—2).

5 The asymptotic scaling laws for low and high scale-factor

The Voigt (2) and the generalized Voigt (23) profiles aredetifrom the convolutions of two
self-similar processes with different scaling laws andy asnsequence, the similarity is lost.
However, we ask which are the scaling laws of the Voigt fuorddiin the limits of low and
high values of the scale-factor

Since for Lévy stable densities with# 2 the mean square displacement diverges, the
same occurs for the ordinary and the generalized Voigt fanstthen, to analyze the scaling
laws whent — 0 andt — o, the variancex?) cannot be used. However, West & Seshadri
[49] introduced for the Lévy densitids, (x) the g-th fractional modulo momentxd|) when
g < a. Then, the characteristic scaling of Lévy process can bysby mean the quantity
(]x9])*/9. In this respect, Zolotarev [54] derived the following farta that holds for a generic
probability densityf (x)

(X = %F(1+ q)sin(%) /Om(l— Re[f(k)])k 9 Ldk.
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Fig. 2 The evolution of the generalized Voigt functian(x, 1), for symmetry reasons on the positive
semi-axis, for the pairény,a2) = {(0.5,2),(1.5,2),(0.5,1.5),(1,1.5)} with1=0.1,1,10.

~

In our casef (k) is replaced by (k,T) andg < min{a,02}. In papers [4, 43] the limits
(1 — 0,T — =) are computed using the Zolotarev formula for the case of@oition of two
Lévy densities.

Here, in order to study the asymptotic scaling laws, the M&lansform is used. In fact

—+oo
(X% = 2/ ¥y (x,1)dx=27*(q+1,1), 0<q<minfasaz},  (35)
0

where? *(s) is the Mellin transform of/’ (x), x > 0, defined as [31]

C-+ooi

V(s = fo Troetd, v :2—10_ /Hi V¥ (xS, (36)
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Without loss in generality, let us statie < a». Starting from (23) and following [26, 30], the
Mellin-Barnes integral representation of the generalieidt function v (x) is

1/(12 1 1-— —
) xt) F (&) (51 )r(ﬂ)
02T 270 J ., 2Tl1 L1 az
x 1%0/02H(o1/a2- 1St cog gorr/2)x 0 dsgds; . 37)

Hence its Mellin transform is

H(So-D/az

V*(s1,T) = TZTIF(S())COE(S()TI/Z)
1 1-%— 81\ (ay/a-1)s
X i ), F(sl)r< " )r ds1, (38)

and finally,

(M%) =2v"(q+1,1)
'[Q/az

_— r(q+1)sin(qm/2) — o /Llr(sl)r(

OpTt

—q—0181
a2

) 1l0/02-Dsigg, (39)

Applying the residue theorem tb(%) , we obtain the convergent series fors o,
2

a/a o
() = ~Zr @ ysina2) 5 Sl (S23) eoeves o)

Applying the residue theorem fi(sz ), we obtain the convergent series for» 0,

a2

219/a2 _ (-1 ain—
() = ~Zr @ Dsina/2) 5 S (S ey
Then the two limits under consideration give
(42)

payan /o2 - o0;
AYagtl/or 1 - e,

To conclude, the ordinary and generalized Voigt profile fioms are not self-similar and
their power law scaling depends on the limit of the scaledfacbnsidered. This occurs even
if the two Lévy densities convoluted are self-similar. hetlimit T — 0, the corresponding
scaling law of the generalized Voigt profile is governed by tieévy densities with a higher
value of the characteristic exponent, while in the limit o by that with a lower value. In
particular, for the ordinary Voigt profiléa; = 1,0 = 2) the process scales #52 andt for
low and high values of the scale factor, respectively.

This means that if the power law representinhomogeneitypbstationarity, the resulting
profile is approximated by a Gaussian for small distance®s fan origin, or small elapsed
times, and it is approximated by a Lorentzian for large dis¢s, or large elapsed times. This
result is consistent with the usual limas— 0 anda — o, see Fig. 1.
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6 Conclusion

In the present paper we have considered the Voigt profileifumdt is an interesting function
that emerges from molecular spectroscopy and atmosplaeliative transfer as the combined
effects of Doppler and pressure broadenings. The Voigttionds the convolution of the
Gaussian (due to the Doppler broadening) and the Lorenfdiaanto the pressure broadening)
densities.

The Gaussian and the Lorentzian densities belong to the symentlass of the Lévy
stable densities so a straightforward generalization eir thonvolution is obtained by the
convolution of two arbitrary symmetric Lévy densities.

Generally, Voigt profile characteristics are studied wihpect to a weight-parameter
that is the ratio of Lorentzian to Gaussian widtasr w /wg, and it is assumed to be a
constant property of the process. Differently, here we twresidered both widths depend-
ing on a scale factor that can be representative of inhomogeneity or not statignaVe
have introduced parametric integro-differential equagifor the ordinary and the generalized
Voigt functions. These integro-differential equationa ba classified aspace-fractional dif-
fusion equations of double order because they include two Riesz space-fractional derestiv
Further generalization can be obtained considespage-fractional diffusion equations of
distributed order.

Finally, the limits of the Voigt function for low and high vas of the scale factor are
considered. In this respect, the Voigt function turns oubéonot self similar, even if it is
expressed as the convolution of two self similar Lévy peses. In fact, the Voigt profile
has not a single power law scaling for each values of the $aeter, as it is for self similar
processes, but its scaling law is governed by the Lévy tiemsth the higher value of the
characteristic exponent whan— 0 and by the Lévy density with the lower value of the
characteristic exponent when— . In the ordinary case, it means by the Guassian density
whent — 0 and by the Lorentzian density when- . These results are not in opposition
with previous studied limite — 0 anda — oo, but here they are obtained as consequence
of two different power law scalings for the Doppler and thegsure broadenings and not by
variation of the relative weight of density widths.
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