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Abstract

The aim of this Short Note is to highlight that the generalized grey

Brownian motion (ggBm) is an anomalous diffusion process driven by a
fractional integral equation in the sense of Erdélyi–Kober, and for this rea-
son here it is proposed to call such family of diffusive processes as Erdélyi–

Kober fractional diffusion. The ggBm is a parametric class of stochastic
processes that provides models for both fast and slow anomalous diffusion.
This class is made up of self-similar processes with stationary increments
and it depends on two real parameters: 0 < α ≤ 2 and 0 < β ≤ 1. It
includes the fractional Brownian motion when 0 < α ≤ 2 and β = 1, the
time-fractional diffusion stochastic processes when 0 < α = β < 1, and
the standard Brownian motion when α = β = 1. In the ggBm framework,
the Mainardi function emerges as a natural generalization of the Gaussian
distribution recovering the same key role of the Gaussian density for the
standard and the fractional Brownian motion.
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Diffusion in disordered media is commonly named anomalous, to mark
a difference with the classical diffusion processes where the probability den-
sity function pdf to find a particle in the place x at the time t is Normal,
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i.e., Gaussian, and for this it is called Normal diffusion, or Gaussian diffu-
sion. Moreover, beside the non-Gaussian particle pdf , the anomalously is
embodied even by the non-linear growing in time of the variance of the par-
ticle spreading [8]. The process of anomalous diffusion is referred to as fast

diffusion, when the variance of the particle spreading grows with a power
law with exponent greater than 1, and it is referred to as slow diffusion,
when such exponent is lower than 1.

In the case of anomalous diffusion, the classical local flux-gradient re-
lationship does not hold and it is necessary to determine a non-local re-
lationship. It is well-known that a useful mathematical tool for physical
investigation and description of non-local and anomalous diffusion is Frac-
tional Calculus, which is that branch of mathematical analysis dealing with
pseudo-differential operators interpreted as integrals and derivatives of non-
integer order [7, 26].

Non-locality can be designated in time (time-fractional diffusion) or in
space (space-fractional diffusion), as well as both in space and time (space-
time fractional diffusion equation) [15]. Generally, when the fractional dif-
ferentiation is considered for the time, then the fractional derivative opera-
tor is assumed to be in the Caputo or in the Riemann–Liouville sense, when
the fractional differentiation is considered for the space, then the fractional
derivative operator is assumed to be in the Riesz–Feller sense.

Recently, the extension of fractional differential equations to distributed-
order fractional differential equations has permitted to describe also pro-
cesses whose scaling law changes in time, see e.g. [17, 28, 35].

Furthermore, under the physical point of view, when there is no sep-
aration of timescale between the microscopic and the macroscopic level of
the process the randomness of the microscopic level is transmitted to the
macroscopic level and the correct description of the macroscopic dynamics
has to be in terms of the Fractional Calculus [6]. Moreover, fractional inte-
gro/differential equations are related to phenomena with fractal properties
[27].

A fractional differential approach has been successfully used for mod-
elling in several different disciplines as for example statistical physics [19],
neuroscience [12], economy [29], control theory [37] and combustion science
[24]. Further applications of the fractional approach are recently introduced
and discussed by J.A. Tenreiro Machado [36].

Normal diffusion, or Gaussian diffusion, is a Markovian stochastic pro-
cess driven by the classical parabolic equation

∂P

∂t
=

∂2
P

∂x2
, x ∈ R , t ∈ R+

0 , (1)
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with initial condition P (x, 0) = P0(x). The fundamental solution of (1),
which is named also Green function, and corresponding to the case with
initial condition P (x, 0) = P0(x) = δ(x), is the Gaussian density

f(x, t) =
1√
4πt

exp
�
−x

2

4t

�
, (2)

whose variance grows linearly in time, i.e., �x2� =
� +∞

−∞
x

2
f(x, t) dx = 2 t.

The density function P (x, t) with general initial condition P (x, 0) = P0(x)
is related to the fundamental solution f(x, t) by the following convolution
integral

P (x, t) =
� +∞

−∞
f(ξ, t)P0(x− ξ) dξ . (3)

In order to generalize the classical Markovian setting to Non-Markovian
cases, the following integral equation has been introduced by Mura, Taqqu
and Mainardi [23]:

P (x, t) = P0(x) +
� t

0

∂g(s)
∂s

K[g(t)− g(s)]
∂2

P (x, s)
∂x2

ds , (4)

where K(t) is a memory kernel and g(t), with g(0) = 0, is a smooth and
increasing function describing a time stretching. The Green function of (4)
G(x, t), which is the marginal one-point one-time pdf of the non-Markovian
diffusion process, turns out to be

G(x, t) =
� ∞

0
f(x, τ)h(τ, g(t)) dτ , (5)

where f(x, t) is the Gaussian density (2) that is the fundamental solution
of the Markovian diffusion process, i.e., K(t) = δ(t), and h(τ, t) is the
fundamental solution of the so-called non-Markovian forward drift equation

u(τ, t) = u0(τ)−
� t

0
K(t− s)

∂u(τ, s)
∂τ

ds , τ , t ∈ R+
0 , (6)

where u0(τ) = u(τ, 0).
When the kernel and the time-stretching functions are stated as

K(t) =
t
β−1

Γ(β)
, g(t) = t

α/β
, 0 < α ≤ 2 , 0 < β ≤ 1 , (7)

Equation (4) becomes

P (x, t) = P0(x) +
1

Γ(β)
α

β

� t

0
τα/β−1 (tα/β − τα/β)β−1 ∂2

P (x, τ)
∂x2

dτ , (8)

that was originally introduced by A. Mura in his PhD Thesis [20], and later
discussed by him and collaborators in a number of papers [16, 21, 22, 23].
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It is well-known that it exists a relationship between the solutions of a
certain class of integral equations that are used to model anomalous diffu-
sion and stochastic processes. In this respect, the density function P (x, t)
which solves (8) is the marginal particle pdf , i.e., the one-point one-time
density function of particle dispersion, of the generalized grey Brownian

motion (ggBm) [20, 21, 22].
The ggBm is a special class of H-sssi processes of order H = α, or

Hurst exponent H = α/2, where, according to a common terminology, H-
sssi means H-self-similar-stationary-increments. The ggBm provides non-
Markovian stochastic models for anomalous diffusion, of both slow type
0 < α < 1 and fast type 1 < α < 2. The ggBm includes some well-known
processes, so that it defines an interesting general theoretical framework. In
fact, the fractional Brownian motion appears for β = 1, the grey Brownian
motion, in the sense of W. R. Schneider [30, 31], corresponds to the choice
0 < α = β < 1, and finally the standard Brownian motion is recovered by
setting α = β = 1. It is worth noting to remark that only in the particular
case of the Brownian motion the stochastic process is Markovian. Moreover,
the ggBm is not an ergodic process [22].

The integral in the non-Markovian kinetic equation (8) can be expressed
in terms of an Erdélyi–Kober fractional integral. In fact, let µ, η and γ
be µ > 0, η > 0 and γ ∈ R, the Erdélyi–Kober fractional integral operator

I
γ,µ
η , for a sufficiently well-behaved function ϕ(t), is defined as [7, formula

(1.1.17)]

I
γ,µ
η ϕ(t) =

t
−η(µ+γ)

Γ(µ)

� t

0
τηγ (tη − τη)µ−1ϕ(τ) d(τη)

=
η

Γ(µ)
t
−η(µ+γ)

� t

0
τη(γ+1)−1(tη − τη)µ−1ϕ(τ) dτ , (9)

hence equation (8) can be re-written as

P (x, t) = P0(x) + t
α

�
I

0,β
α/β

∂2
P

∂x2

�
. (10)

The integral operator I
γ,µ
η was introduced by I.N. Sneddon (see for

example [32, 33, 34]) who studied its basic properties and emphasized its
useful applications to the generalized axially symmetric potential theory
(GASPT) and other physical problems (say in electrostatics, elasticity, etc).
When η = 1, one obtains the operators of fractional integration as originally
introduced by H. Kober [9] and A. Erdélyi [1] and, when η = 2, those
introduced by I.N. Sneddon [32, 33, 34]. In the special case γ = 0 and
η = 1, the Erdélyi–Kober fractional integral operator (9) and the Riemann–
Liouville fractional integral of order µ, here noted by J

µ, are related by the
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formula

I
0,µ
1 ϕ(t) =

t
−µ

Γ(µ)

� t

0
(t− τ)µ−1ϕ(τ) dτ = t

−µ
J

µ ϕ(t) . (11)

The above remark about the relationship between the governing equa-
tion of the ggBm (8) and the Erdélyi–Kober operator of Fractional Calculus
(9) constitutes the aim of this Short Note. The possibility to re-write equa-
tion (8) as (10) was briefly noted by the author in [25]. However, here this
correspondence between the ggBm and the Erdélyi–Kober fractional inte-
gral operator is stressed and, since the ggBm serves as a stochastic model
for the anomalous diffusion, this leads to define the family of diffusive pro-
cesses governed by the ggBm as Erdélyi–Kober fractional diffusion.

In order to establish the diffusion-type equation corresponding to (8),
we need also the notion of the Erdélyi-Kober fractional differential operator.
Let n−1 < µ ≤ n, n ∈ N , the Erdélyi–Kober fractional derivative is defined
as [7, formula (1.5.19)]

D
γ,µ
η ϕ(t) =

n�

j=1

�
γ + j +

1
η
t
d

dt

�
(Iγ+µ,n−µ

η ϕ(t)) . (12)

The Riemann–Liouville fractional derivative of order µ, m − 1 < µ ≤ m,

m ∈ N is defined as D
µ
RL ϕ(t) =

d
m

dtm
J

m−µ ϕ(t), and it emerges that the
Erdélyi–Kober and the Riemann–Liouville fractional derivatives are related
through the formula

D
−µ,µ
1 ϕ(t) = t

µ
D

µ
RL ϕ(t) . (13)

A further important property of the Erdélyi–Kober fractional derivative is
its reduction to the identity operator when µ = 0, i.e.,

D
γ,0
η ϕ(t) = ϕ(t) . (14)

Recently, the notions of the Erdélyi–Kober fractional integrals and
derivatives have been further extended by Yu. Luchko [10] and Yu. Luchko
& J. Trujillo [11].

Equation (10) in diffusive form is obtained by deriving in time both
sides and it results

∂P

∂t
= α t

α−1
I

0,β
α/β

∂2
P

∂x2
+ t

α ∂

∂t

�
I

0,β
α/β

∂2
P

∂x2

�

= t
α−1

�
α + t

∂

∂t

��
I

0,β
α/β

∂2
P

∂x2

�
, (15)
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that can be recast as
∂P

∂t
=

α

β
t
α−1

�
(β − 1) + 1 +

β

α
t
∂

∂t

��
I

0,β
α/β

∂2
P

∂x2

�
, (16)

and finally, by using (12),

∂P

∂t
=

α

β
t
α−1

D
β−1,1−β
α/β

∂2
P

∂x2
. (17)

A diffusion-type equation for the ggBm was previously proposed [16] but
adopting, with an abuse of notation, the Riemann–Liouville fractional dif-
ferential operator with a stretched time variable. Then, since the Erdélyi–
Kober fractional differential operator is taken into account, Equation (17)
follows to be the correct formulation.

The Green function corresponding to (10, 17) is [20, 21, 22, 23]

G(x, t) =
1
2

1
tα/2

Mβ/2

�
|x|
tα/2

�
, (18)

where Mν(z) is the M -Wright function, often referred to as Mainardi func-
tion in the literature devoted to fractional diffusion [14, 26], and it is defined
as [13]

Mν(z) =
∞�

n=0

(−z)n

n!Γ[−νn + (1− ν)]

=
1
π

∞�

n=1

(−z)n−1

(n− 1)!
Γ(νn) sin(πνn) , 0 < ν < 1 , (19)

see Reference [2, 3, 16] for a review. Here it is reminded the noteworthy
composition, or subordination-type, formula [18]

t
−ν

Mν

�
ξ

tν

�
= t

−�
� ∞

0
Mλ

�
ξ

τλ

�
M�

� τ

t�

�
dτ

τλ
, with ν = λ � , (20)

where 0 < ν ,λ , � < 1 and ξ , t , τ ∈ R+
0 . By using (20) and the special

case M1/2(z) = (1/
√

π) exp(−z
2
/4), Green function (18) can be expressed

as [16, 22, 23]

G(x, t) =
1
2

1
tα/2

Mβ/2

�
|x|
tα/2

�
(21)

=
1√
4tα

� ∞

0
M1/2

�
|x|t−α/2

τ1/2

�
Mβ(τ) dτ (22)

=
� ∞

0

1√
4πτ tα

exp
�
− x

2

4τ tα

�
Mβ(τ) dτ , (23)
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so that, under the view point of statistical mechanics, the ggBm, or the
Erdélyi–Kober fractional diffusion, emerges to be the superposition of pro-

cesses with stretched Gaussian density
1√

4πτ tα
exp

�
− x

2

4τ tα

�
, i.e. frac-

tional Brownian motions, whose variance is �x2� = 2τ t
α where τ is a ran-

dom coefficient distributed according to Mβ(τ).
However, equation (23) can be further re-managed to exhibit a subor-

dination type representation. In fact, after the change of variable t∗ = τ t
α,

it follows that

G(x, t) =
� ∞

0

1√
4πt∗

exp
�
− x

2

4t∗

�
1
tα

Mβ

�
t∗
tα

�
dt∗ , (24)

which means that the random trajectory x = x(t) can be obtained as a
subordination process by x = x(t) = y[t∗(t)], where t∗ = t∗(t) is a positive
random variable that evolves in the natural time t and it is referred to as
operational time [4, 5]. The process t∗ = t∗(t) is the directing process that
realizes in the (t, t∗)-plane whose pdf is t

−α
Mβ(t∗t−α), please note that the

pdf of the directing process belongs to the same family of the Green function
G(x, t) and they differ for the parameter pair, and y = y(t∗) is the parent
process that is a random trajectory in the (t∗, y)-plane with Gaussian pdf

evolving in the operational time t∗. Geometrically, identifying the spatial
coordinates y and x, the subordination structure x = x(t) = y[t∗(t)] is
obtained by concatenation.

The marginal pdf of the non-Markovian diffusion process ggBm emerges
to be related to the Mainardi function Mν and it describes both slow and
fast anomalous diffusion. In fact, the variance of Green function (18) is

�x2� =
� +∞

−∞
x

2G(x, t) dx = (2/Γ(β + 1)) t
α, then the resulting process

turns out to be self-similar with Hurst exponent H = α/2 and the variance
law is consistent with slow diffusion for 0 < α < 1 and fast diffusion for
1 < α ≤ 2. However it is worth noting to be remarked also that a linear
variance growing is possible, but with non-Gaussian pdf , when β �= α = 1,
and a Gaussian pdf with non-linear variance growing when β = 1 and
α �= 1.

It is straightforward to note that, by using formula (13), evolution
equation (8) reduces to the time-fractional diffusion if α = β < 1, i.e.,

∂P

∂t
= D

1−β
RL

∂2
P

∂x2
, with G(x, t) =

1
2

1
tβ/2

Mβ/2

�
|x|
tβ/2

�
, (25)



124 G. Pagnini

and variance �x2� = (2/Γ(β + 1)) t
β, and, by using formula (14), it reduces

to the stretched Gaussian diffusion if α �= 1 and β = 1, i.e.,
∂P

∂t
= α t

α−1 ∂2
P

∂x2
, with G(x, t) =

1
2

1
tα/2

M1/2

�
|x|
tα/2

�

=
1√
4π

1
tα/2

exp
�
− x

2

4tα

�
, (26)

and variance �x2� = 2 t
α, and finally to the standard Gaussian diffusion if

α = β = 1, i.e., (1) with (2) and variance �x2� = 2 t. The Green functions
of these last two cases, i.e., (α �= 1, β = 1) and (α = β = 1), follows by
(23) noting that M1(τ) = δ(τ − 1).

In general, even if the Green functions are interpreted as one-point pdf

evolving in time, they cannot determine a unique (self-similar) stochastic
process because this requires the determination of any multi-point pdf . But,
what concerns the ggBm, since the increments are stationary, it emerges
to be uniquely determined by its covariance structure [21, 22]. Then, even
if the ggBm is not Gaussian in general, it is a valuable example of a pro-
cess defined only through its first and second moments, which indeed is a
remarkable property of the Gaussian processes. Then the ggBm is a direct
generalization of the Gaussian processes and, in the same way, the Mainardi
function Mν is a generalization of the Gaussian function, and it emerges
to be the marginal pdf of non-Markovian diffusion processes that describe
both slow and fast anomalous diffusion.

To conclude, in this Short Note it is highlighted the relationship between

the Erdélyi–Kober fractional operators and the valuable family of stochastic

processes generated by the ggBm, whose some remarkable properties are
reported above, and the key role of the Mainardi function in this framework.
In fact, the particle pdf of associated to the ggBm is the solution of a
fractional integral equation (10), or analogously of a fractional diffusion
equation (17), in the Erdélyi–Kober sense and this solution is a Mainardi
function. Since the governing equation of these processes is a fractional
equation in the Erdélyi–Kober sense it is proposed to called this family of
diffusive processes as Erdélyi–Kober fractional diffusion.
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