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Abstract. The evolution equation for the radius of an isolated premixed
flame ball is derived in the framework of a new method that strongly
simplifies previous ones and highlights that they are based on Gaussian
modelling of diffusion. The main idea is to split the flame ball in two
components: the inner kernel, which is driven by a Poisson-type equa-
tion with a general polynomial forcing term, and the outer part, which
is driven by a generalized diffusion process valid for fractional diffusive
media. The evolution equation for the radius of the flame ball is finally
determined as the evolution equation for the interface that matches
the solution of the inner spherical kernel and the solution of the outer
diffusive part and it emerges to be a nonlinear fractional differential
equation. The effects of fractional diffusion on stability of solution are
also picked out.

1 Introduction

The topic of Flame Balls is an intriguing scientific issue beginning from its history. In
fact, stable flame balls were theoretically predicted since 1944 by the Soviet physicist
Ya. B. Zeldovich [1] but they were experimentally discovered only accidentally and
much more recently in 1984, during short-duration drop tower experiments conducted
by P. D. Ronney and collaborators [2,3]. They were finally experimentally established
in 1998 from space flight experiment conducted on the STS-83/MSL-1 Space Shuttle
mission [4] because a micro-gravity environment is needed to obtain spherical
symmetry and to avoid buoyancy-induced extinction of the flame ball. See also
http://spaceresearch.nasa.gov/research projects/sts-107 sofball.html.
Then experimentally based theoretical research is relatively recent.
A flame ball is an isolated three-dimensional combustion spot with spherical

symmetry that occurs in a lean premixed mixture. Differently from the well-known
classical nonpremixed combustion, where the fuel and the oxidant must be mixed
before than combustion can take place, in the premixed combustion all reactants
are intimately mixed at the molecular level before the combustion is started, and
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the combustion process is the one-step irreversible chemical reaction Fresh Gas →
Burnt Gas+Heat. Premixed combustion includes also the familiar laboratory Bun-
sen burner as well as the flame inside a gasoline-fueled internal combustion engine.
Moreover, understanding combustion in lean conditions has a key role in product
engineering because it is involved in designing of efficient, clean-burning combustion
engines. In fact lean premixed combustion is characterized by low production of NOx
and particulate and then it is of paramount importance to challenge the environmen-
tal emergency and to meet future emission standard.
Evolution equations for the flame ball radius R have been derived [5–8] and they

emerge to be nonlinear fractional differential equations of order 1/2. However all
derivations are based on a complex matching of multiple asymptotic expansions. In
the present paper a recent method proposed by the author [9,10] to derive the evo-
lution equation for the flame ball radius is taken into account. It strongly simplifies
previous methods and moreover it highlights that considered literature equations are
founded on the classical diffusion process which is characterized by a Gaussian prob-
ability density function (pdf) and a linear growth of the variance of particle displace-
ment, i.e 〈x2〉 ∼ t. Classical diffusion process is also referred to as normal diffusion,
to distinguish it from anomalous diffusion in which the displacement variance grows
nonlinearly in time, for example with the power law 〈x2〉 ∼ tα, with α > 0. Generally,
anomalous diffusion is met in complex media. Obviously the classical diffusion process
is not more correct for describing anomalous diffusion processes [11]. Remembering
the claim by Klafter and Sokolov that Anomalous is normal [11], in the framework of
this recent method [9,10] the evolution equation for the flame ball radius is derived
for fractional diffusive media.
In literature, anomalous diffusion is modeled in several different ways, however

Fractional Calculus turns out to be one of the most successful tool [12]. Models
based on fractional differential equations have been proposed in a large number of
research fields. The main characteristic that relates fractional differential equations
to anomalous diffusion is that, when the solution is interpreted as pdf , the particle
displacement variance turns out to be driven by the fractional order of derivation.
Here a general non-Markovian time fractional diffusion process is considered [13,14].
It can model both slow diffusion, i.e. 〈x2〉 ∼ tα with α < 1, and fast diffusion, i.e.
〈x2〉 ∼ tα with 1 < α ≤ 2. Moreover, all the statistical moments of the pdf of particle
displacement are finite, which is a remarkable property for physical applications and
not met by some other fractional diffusion models, see e.g. [15]. It is important to
remark and stress here that, previously, such a method has been just roughly out-
lined [9], without applications, and mathematically reconsidered [10] with sketched
reference to the space-time fractional diffusion equation [15]. Here it is considered for
the general non-Markovian time fractional diffusion process [13,14] and the effects of
fractional diffusion on stability of solution are also picked out.
In Sec. 2 the scientific background is briefly reminded including Fractional

Calculus, Zeldovich solution and literature equations for flame ball radius and frac-
tional diffusion modelling. In Sec. 3 the new method is proposed and the equation
for the evolution of the flame ball radius in fractional diffusive media is derived with
a general polynomial forcing. In Sec. 4 the effect of anomalous diffusion on the sta-
bility of solution is highlighted and analyzed. Finally in Sec. 5 the conclusion and
perspective for future developments are discussed.

2 Scientific background

2.1 Remind in fractional calculus

This introductory section to Fractional Calculus follows the 1996 CISM lectures by
Gorenflo and Mainardi [16].
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Let f(t), with t > 0, be a sufficiently well-behaved function, Riemann–Liouville
and Caputo fractional derivatives of real order µ > 0 are both based on Riemann–
Liouville fractional integral which is defined as

tJ
µ f(t) :=

1

Γ(µ)

∫ t

0
(t− τ)µ−1 f(τ) dτ, µ > 0. (1)

The operator tJµ is conventionally the Identity operator when µ = 0, i.e. tJ0 = I,
and it meets the semi-group property

tJ
µ
tJ
η = tJ

η
tJ
µ = tJ

µ+η, µ, η ≥ 0. (2)

The most simple and useful example of Riemann–Liouville fractional integration is
the function f(t) = tν , for t > 0,

tJ
µ tν =

Γ(ν + 1)

Γ(ν + 1 + µ)
tν+µ, µ ≥ 0, ν > −1. (3)

The Riemann–Liouville time fractional derivative of order µ > 0 is defined, in analogy
with the ordinary derivative, as the operator tDµ which is the left inverse of the
Riemann–Liouville integral of order µ

tD
µ
tJ
µ = I, µ > 0. (4)

If m denotes the positive integer such that m− 1 < µ ≤ m, then from (2) and (4) it
follows that tDµf(t) := tDmtJm−µf(t). Hence for m− 1 < µ < m

tD
µf(t) =

dm

dtm

[
1

Γ(m− µ)

∫ t

0

f(τ)

(t− τ)µ+1−m dτ
]
, (5)

and tDµf(t) = dmf(t)/dtm when µ = m.
On the other hand, the fractional derivative of order µ > 0 in the Caputo sense is

defined as the operator tD
µ
∗ such that tD

µ
∗ f(t) := tJm−µtDmf(t). Hence for m− 1 <

µ < m

tD
µ
∗ f(t) =

1

Γ(m− µ)

∫ t

0

f (m)(τ)

(t− τ)µ+1−m dτ, (6)

and tD
µ
∗ f(t) = dmf(t)/dtm when µ = m. Thus, when the order is not integer the

two fractional derivatives mainly differ because the derivative of order m does not
generally commute with the fractional integral.
Furthermore, unlike Riemann–Liouville fractional derivative, Caputo fractional

derivative of order µ, with m − 1 < µ ≤ m, satisfies the relevant property of being
zero when it is applied to a constant, and, in general, when it is applied to any
power function of non-negative integer degree less than m. Indeed, what concerns
Riemann–Liouville derivative operator, for t > 0,

tD
µtν =

Γ(ν + 1)

Γ(ν + 1− µ) t
ν−µ, µ ≥ 0, ν > −1. (7)

Gorenflo and Mainardi [16] have shown the essential relationships between the two
fractional derivatives (when both exist), for m− 1 < µ < m, which are

tD
µf(t) = tD

µg(t) if f(t) = g(t) +
m∑

j=1

kjt
µ−j , (8)

tD
µ
∗ f(t) = tD

µ
∗ g(t) if f(t) = g(t) +

m∑

j=1

kj t
m−j , (9)
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where coefficients kj are arbitrary constants, and

tD
µ
∗ f(t) = tD

µ

[

f(t)−
m−1∑

n=0

f (n)(0+)
tn

n!

]

, (10)

that applying (7) becomes

tD
µ
∗ f(t) = tD

µf(t)−
m−1∑

n=0

f (n)(0+)tn−µ

Γ(n− µ+ 1) . (11)

Caputo fractional derivative is a regularization in the time origin of the Riemann–
Liouville fractional derivative. From (11) it emerges that Caputo fractional deriv-
ative exists if all the limiting values f (n)(0+) := limt→0+ f

(n)(t) are finite for
n = 0, 1, 2, . . . ,m − 1. Further on the basic theory of Fractional Calculus can be
found elsewhere in this Issue, in particular, for what concerns the sufficient and nec-
essary conditions of the existence of the Riemann–Liouville and Caputo fractional
derivation, please see [17].

2.2 Zeldovich flame ball and its radius evolution equation in Gaussian diffusive
media

Stable flame ball was theoretically predicted in 1944 by the Soviet physicist Ya. B.
Zeldovich [1] as exact solution to the heat and mass conservation equations in spherical
geometry with radial coordinate denoted by r,

ρCp

(
∂T

∂t
+ U

∂T

∂r

)
= h
1

r2
∂

∂r

(
r2
∂T

∂r

)
+QW, (12a)

ρ

(
∂YF
∂t
+ U

∂YF
∂r

)
= ρDF

1

r2
∂

∂r

(
r2
∂YF
∂r

)
−W, (12b)

where T is the temperature, YF the mass fraction of the fresh gas, U the radial velocity,
W the chemical rate, Q the heat of reaction, ρ the specific mass, Cp the specific heat
at constant pressure, h the heat conductivity, DF the diffusion coefficient of the fresh
gas. Temperature and mass concentration fields are related in (12) by

Le(T − T∞) =
Q

Cp

(
1− YF
Y∞

)
, (13)

where the nondimensional number Le = h/(ρ DF Cp) is called Lewis number and
T∞ and Y∞ are the reference values for temperature and mass fraction of fresh gas,
respectively.
After transformation (13), and setting without loss of generality T∞ = 0 and

Y∞ = 1, equation for T (12a) gives

ρ

(
∂YF
∂t
+ U

∂YF
∂r

)
= LeρDF

1

r2
∂

∂r

(
r2
∂YF
∂r

)
− LeW. (14)

When, for large activation energy, the chemical source term behaves like a Dirac
δ-function at the flame sheet [6], the solutions to steady, convection-free diffusion
equations for temperature and chemical species concentration, i.e.

1

r2
∂

∂r

(
r2
∂T

∂r

)
= 0 and

1

r2
∂

∂r

(
r2
∂YF
∂r

)
= 0, (15)
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are of the form c1+c2/r, where c1 and c2 are constants, as it has been clearly reviewed
by Ronney [4]. This form satisfies the requirement that T and YF be bounded as
r →∞. For cylindrical and planar geometry the corresponding forms are c1 + c2 ln r
and c1 + c2r, respectively, which are obviously unbounded as r →∞. For this reason
theory admits steady flame ball solutions, but not steady “flame cylinder” or steady
“flame slab” solutions.
Zeldovich showed that, for an adiabatic flame ball, the temperature at the surface

of the flame ball T∗ is T∗ = Tad/Le, where Tad is the adiabatic homogeneous flame
temperature. Then, inside the ball (r < R), the temperature profile T (r) is constant
and corresponds to the burnt gas temperature and, outside the ball (r > R), it
decreases depending on the flame ball radius R with the law

T (r) = T∗
R

r
, r > R. (16)

What concerns the fresh gas mass fraction, it is null inside the ball and, as it follows
from formula (13), it increases outside the ball as

YF = 1−
R

r
, r > R, (17)

where CpTad/Q = 1. Flame balls can exist if T∗ > Tad and this condition is met when
Le < 1, while conventional propagating flames are observed under any value of Lewis
number. The reason is that for T∗ < Tad, Le > 1, the flame balls are weaker than
plane flames.
This steady state can be realized only if the flame ball radius R is constant in

time. Then, the evolution equation for the flame ball radius and the later analysis on
the stability of the solution are necessary. In literature, such equation is derived by
matching multiple asymptotic expansions. The first valuable result was obtained in
1985 by Joulin [5] neglecting heat losses. Joulin seminal equation is

R(t)tD
1/2
∗ R(t) = R(t) lnR(t) + Eq(t), (18)

where Eq(t) is a measure of the energy input with intensity E > 0 and temporal
dependence as q(t). Later heat losses were included and in 1990 Buckmaster, Joulin
and Ronney [6,7] derived the following equation

R(t)tD
1/2
∗ R(t) = R(t) lnR(t) + Eq(t)− λR3(t), (19)

where λ is associated to heat losses. More recently, on the basis of the linearized
Eddington equation for radiative field, Guyonne and Noble [8] derived in 2007 the
following evolution equation for the radius of a flame ball

R(t)tD
1/2
∗ R(t) = R(t) lnR(t) + Eq(t)− 3λR2(t). (20)

The above nonlinear equations (18), (19), (20) are very difficult to be managed,
however successful numerical schemes have been developed [8,18–21]. In §3, the recent
simple method of derivation [9,10] is re-presented because it turns out to be useful
to highlight and clarify which are the main aspects that constitute and drive the
process and then to help the advance of research on this topic, in particular on
finding analytical and/or numerical solution, analyzing solution properties and study
solution stability.
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2.3 Fractional diffusion modelling

Normal or Gaussian diffusion is a process driven by the Markovian classical diffusion
equation

∂P

∂t
=
∂2P

∂x2
, x ∈ R, t ∈ R+0 , (21)

with P (x, 0) = P0(x), where P (x, t) is the pdf to find a particle in x at time t.
The fundamental solution of (21) corresponding to P0(x) = δ(x), named also Green
function, is the Gaussian density

f(x, t) =
1√
4πt
exp

{
−x

2

4t

}
, (22)

whose variance grows linearly in time, i.e. 〈x2〉 =
∫ +∞
−∞ x

2f(x, t) dx = 2 t.
In order to generalize the classical Markovian setting to Non-Markovian cases, the

following non-Markovian diffusion equation has been introduced by Mura, Taqqu and
Mainardi [13]

P (x, t) = P0(x) +

∫ t

0

∂g(s)

∂s
K[g(t)− g(s)]∂

2P (x, s)

∂x2
ds, x ∈ R, t ∈ R+0 , (23)

where K(t) is a memory kernel and g(t), with g(0) = 0, is a smooth and increasing
function describing a time stretching. The Green function of equation (23) turns out
to be

G(x, t) =
∫ ∞

0
f(x, τ)h(τ, g(t)) dτ, (24)

where f(x, t) is the Gaussian solution (22) of the Markovian diffusion process, i.e.
K(t) = δ(t), and h(τ, t) is the fundamental solution of the so-called non-Markovian
forward drift equation

u(τ, t) = u(τ, 0)−
∫ t

0
K(t− s)∂u(τ, s)

∂τ
ds, τ, t ∈ R+0 . (25)

When the kernel and the time-stretching functions are determined as

K(t) =
tβ−1

Γ(β)
, g(t) = tα/β , 0 < α ≤ 2, 0 < β ≤ 1, (6.5)

equation (23) becomes [14,22]

P (x, t) = P0(x) +
1

Γ(β)

α

β

∫ t

0
τα/β−1(tα/β − τα/β)β−1 ∂

2P (x, τ)

∂x2
dτ, (26)

that in diffusion form reads

∂P

∂t
=
α

β
tα/β−1

[
tα/βD

1−β ∂
2P

∂x2

]
. (27)

The Green function of equation (27) is [14,22]

G(x, t) = 1
2

1

tα/2
Mβ/2

(
|x|
tα/2

)
, (28)
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where Mν(z) is the M -Wright function [23], also named Mainardi function see e.g.
[24], which is defined as

Mν(z) =
∞∑

n=0

(−z)n
n!Γ[−νn + (1− ν)] =

1

π

∞∑

n=0

(−z)n−1
(n− 1)! Γ(ν) sin(πνn), 0 < ν < 1 , (29)

see Ref. [25] for a review, here it is reminded only the special case M1/2(z) =
(1/
√
π) exp(−z2/4).
It is worth noting to remark here that the non-Markovian fractional kinetic

Eq. (26) can be expressed in terms of the Erdélyi–Kober fractional integral Iγ,δη as
follows

P (x, t) = P0(x) + t
α

[
I0,βα/β

∂2P

∂x2

]
, (30)

where the Erdélyi–Kober fractional integral operator Iγ,δη of a function v(t) is defined
as [26, formula (1.1.17)]

Iγ,δη v(t) =
η

Γ(δ)
t−η(δ+γ)

∫ t

0
τη(γ+1)−1(tη − τη)δ−1v(τ) dτ. (31)

The variance of (28) is 〈x2〉 =
∫ +∞
−∞ x

2G(x, t) dx = (2/Γ(β +1)) tα, then the resulting
process turns out to be self-similar with Hurst exponent H = α/2 and the variance
law is consistent with slow diffusion for 0 < α < 1 and fast diffusion for 1 < α ≤ 2.
However it is worth noting to be remarked also that a linear variance growing is
possible, but with non-Gaussian pdf , when β += α = 1. It is straightforward to note
that the evolution equation (26) reduces to time-fractional diffusion if α = β < 1, i.e.

∂P

∂t
= tD

1−β ∂
2P

∂x2
, with G(x, t) = 1

2

1

tβ/2
Mβ/2

(
|x|
tβ/2

)
, (32)

and variance 〈x2〉 = (2/Γ (β + 1)) tβ , to stretched Gaussian diffusion if α += 1 and
β = 1, i.e.

∂P

∂t
= αtα

∂2P

∂x2
, with G(x, t) = 1

2

1

tα/2
M1/2

(
|x|
tα/2

)
=
1√
4π

1

tα/2
exp

{
− x

2

4tα

}
,

(33)
and variance 〈x2〉 = 2tα, and finally to standard Gaussian diffusion if α = β = 1, i.e.
(21) with (22) and variance 〈x2〉 = 2 t.
The M -function emerges to be the marginal pdf of non-Markovian diffusion

processes that describe both slow and fast anomalous diffusion. A detailed stochastic
analysis of above non-Markovian modelling of anomalous diffusion is performed in
[13,14,25,27], it follows that the M -Wright function Mν(z) has for anomalous diffu-
sion the same key role of the Gaussian density for standard and fractional Brownian
motions. Here only fractional processes with finite statistical moments are considered
then processes which involves space fractional derivative operators are not taken into
account because infinite moments can occur.
To conclude, different phenomena are described by different fractional differential

equations which could be also nonlinear, see e.g. [28]. However, in all cases, if the
process is self-similar and the variance is proportional to tα, i.e. 〈x2〉 ∼ tα with
α > 0, then the Green function has the general form

G(x, t) = 1

tα/2
H
( x
tα/2

)
. (34)
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In fact

〈x2〉 =
∫ +∞

−∞
x2G(x, t) dx =

∫ +∞

−∞

x2

tα/2
H
( x
tα/2

)
dx

=

{∫ +∞

−∞
η2H(η) dη

}
· tα = const · tα, (35)

after application of the change of variable x = ηtα/2 and provided that∫ +∞
−∞ η2H(η)dη <∞.

3 The flame ball radius evolution equation in fractional
diffusive media

3.1 Description of the method

Let R be at any fixed instant t the radius of the flame ball, then its growing in time
is here assumed to be determined by the evolution of the matching interface between
an inner kernel (r < R), which is the quasi-stationary spherical solution of a Poisson-
type equation, and an outer diffusive part (r > R), which is the solution of a diffusion
equation.
Let Φs be the inner solution and Φd be the outer solution. Then the growing in

time of the flame ball radius is determined by a diffusion operator that acts on the
inner solution computed on the surface of the flame ball. This means that the source
term of the diffusion process is determined by Φs(x, t)δ(x − R(t)) and the action of
the operator emerges to be a double convolution integral both in space and time with
propagating kernel K(x, t), i.e.

R(t) = K(x, t) ∗ Φs(x, t)δ(x− R(t)) = Φd(R, t). (36)

This method has been recently proposed by the author [9,10]. It has been suggested by
the diffusive formulation discussed in [18,29,30]. Moreover, such diffusive formulation,
has been used by Gorenflo and Vessella [31] to study Volterra integral equations.

3.2 The inner solution

Consider a flame initiated by a point source energy input, which spherically evolves
under the action of a radial forcing ∼ 1/r2, radiative heat losses and any possible
forcing. Then the inner solution in spherical coordinates Φs(r, t) is determined as
the quasi-stationary solution of the Poisson-type equation with a general polynomial
forcing

1

r2
∂

∂r

[
r2
∂Φs
∂r

]
=
2

r2
− 2λ

n∑

i=1

6γir
ξi , (37)

with the boundary condition
[
r2
∂Φs
∂r

]

r=0

= −2Eq(t), q(0) = 0, (38)

where Eq(t) is the energy input with intensity E > 0 and temporal variation q(t).
The numerical factors on RHS of (37) and (38) are chosen for formal reasons. Finally,
the inner solution Φs(r, t) turns out to be

Φs(r, t) = 2

[

ln r +
Eq(t)

r
− λr2

n∑

i=1

6γirξi

(ξi + 3)(ξi + 2)

]

= 2F(r, t). (39)
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3.3 The outer solution

Each point of the matching interface is assumed to be diffused along the one-
dimensional axes that ranges from −∞ to +∞ and is aligned with r. Then, the
spherical reference system characterized by r > 0, which was used to determine the
growing of the inner solution Φs, is now abandoned to use a one-dimensional Carte-
sian axes x, such that |x| = r, and the diffusion is modelled with respect to this
reference frame. This means that now the flame ball radius is located in |x| = R.
Finally, the outer diffusive solution Φd is determined as the solution of a diffusion

equation with source term S given by the inner solution computed in the inner-outer
interface located at the flame position R(t). In the r-coordinate system S(r, t) =
Φs(r, t)δ(r − R(t)) = 2F(r, t)δ(r − R(t)) and in the x-coordinate system S(x, t) =
Φs(x, t)δ(x− R(t)) = 2F(x, t)δ(x− R(t)).
Anomalous diffusion is characterized by a nonlinear growing rate in time of the

variance, here the following power law is considered: 〈x2〉 ∼ tα, 0 < α ≤ 2. In §2.2 it
has been pointed out that different types of anomalous diffusion equation have been
proposed in literature. However, from all evolution equations to model anomalous
diffusion which admit a self-similar solution, Green function emerges to be expressed
by formula (34). Then the solution of the whole diffusion process with source term
S(x, t) = Φs(x, t)δ(x−R(t)) = 2F(x, t)δ(x−R(t)) is given by the double convolution
integral

Φd(x, t) = 2

∫ +∞

−∞

∫ t

0
G(x− η, t− τ)F(η, τ)δ(η − R(τ)) dη dτ, (40)

which after computing the convolution in space reduces to

Φd(x, t) = 2

∫ t

0
G(x− R(τ), t− τ)F(R(τ), τ) dτ. (41)

To conclude, inserting (34) in the above formula, the generalized outer solution turns
out to be

Φd(x, t) = 2

∫ t

0
H
[
x− R(t)
(t− τ)α/2

]
F(R(τ), τ)

(t− τ)α/2
dτ. (42)

3.4 The evolution equation

Comparing (36) and (42) it emerges that the propagator K(x, t) is the Green function
(34) and the evolution equation for the flame ball radius follows to be

R(t) = 2H(0)
∫ t

0

F (R(τ), τ)

(t− τ)α/2
dτ = N tJ1−α/2[F (R(t), t)], (43)

with initial condition R(0) = 0, where N = 2H(0)Γ(1 − α/2) and tJ1−α/2 is the
Riemann–Liouville fractional integral of order 1 − α/2 defined in (1). Applying the
Riemann–Liouville time-fractional derivative operator tD1−α/2, which is defined in
(5), on both sides of (43) gives

tD
1−α/2R(t) = N tD1−α/2tJ1−α/2[F (R(t), t)] = N F (R(t), t), (44)

where property (4) is used. After multiplication by R(t), the evolution equation (44)
becomes the following nonlinear fractional differential equation

R(t)D1−α/2t R(t) = N
[

R(t) lnR(t) + Eq(t)− λR3(t)
n∑

i=1

6γiRξi(t)

(ξi + 3)(ξi + 2)

]

. (45)
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Relationship (11) between Riemann–Liouville tDµ and Caputo tD
µ
∗ fractional deriva-

tives can be applied in (45). Since the order of fractional derivation is 0 < 1−α/2 < 1
and R(0+) = 0, then tD1−α/2R(t) = tD

1−α/2
∗ R(t). Finally, in terms of Caputo time-

fractional derivative, the evolution equation of the flame radius is

R(t)tD
1−α/2
∗ R(t) = N

[

R(t) lnR(t) + Eq(t)− λR3(t)
n∑

i=1

6γiRξi(t)

(ξi + 3)(ξi + 2)

]

, (46)

or analogously

R(t)tD
1−α/2
∗ R(t) = R(t) lnRN (t) +NEq(t)− λNR3(t)

n∑

i=1

6γiRξi(t)

(ξi + 3)(ξi + 2)
. (47)

For normal diffusive media the Green function (34) corresponds to the Gaussian
density (22) and α = 1. Then, noting that H(0) = 1/(2

√
π) and remembering that

Γ (1/2) =
√
π, the factor N = 2H(0)Γ (1−1/2) = 1. Moreover for n = 1, if γ1 = 1 and

ξ1 = 0 the generalized evolution equation (46) reduces to Buckmaster–Joulin–Ronney
equation (19), as well as to Joulin equation (18) setting also λ = 0; and if γ1 = 1 and
ξ1 = −1 it reduces to Guyonne–Noble equation (20).

4 Solution stability and Green function of diffusion

The problem of stability of the flame ball is important to theoretically design the
experimental realization of the stable flame balls predicted by Zeldovich, but also for
applicative reasons, to maintain the combustion in the most efficient regime and to
prevent the quenching of the flame, and for security reason, to avoid that the radius
diverges.
Literature analysis on solution stability is performed for Joulin equation (18) and

Buckmaster–Joulin–Ronney equation (19) where Gaussian diffusion is assumed so
that N = 1. For details on stability of solution of (19), the interest reader is referred
to [30,32,33] and to [5,29,34] for the analysis of solution of the original Joulin equation
(18) without heat losses. Here it is briefly reminded by literature that when radiative
heat losses are larger than a critical value, i.e. λ > λcr, then the flame always quenches;
otherwise when λ < λcr the flame quenches if E < Ecr(q) and it stabilizes to R2 (or
R1) if E > Ecr(q) (or E = Ecr(q)), where R2 > R1 are the solutions of the equation
lnR = λR2. Stability and threshold phenomenon are analyzed for the general case
with a polynomial forcing but omitting the logarithmic function in [32, §5].
However the quantity N = 2H(0)Γ(1 − α/2) is much more then a neutral multi-

plicative factor as follows from (47). This means that the stability analysis for equa-
tions in fractional diffusive media when N += 1 gives different results from that for
normal diffusive media when N = 1, at least quantitatively on the determination
of the threshold value. In particular, from the definition of N it emerges that this
difference is due to H(0) and then to the Green function G(x, t) when x = 0, but this
means also that the whole diffusive process is of paramount importance because the
behaviour of G(0, t) is peculiar of each process. Different behaviours of G(0, t) for the
cases listed in Table 1 are plotted in Fig. 1. What emerges from the plots is that in
slow diffusion cases a), d), e) with α = 0.5, the decreasing of G(0, t) is quicker for
short elapsed times (t < 1) and slower for large times (t > 1) than the normal case
g), in particular closer is β to the normal diffusion value β = 1 then closer is G(0, t)
to the normal case g). What concerns fast diffusion cases c), f) with α = 1.5, the
behaviour in time with respect to the normal case g) is the opposite of slow diffusion
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Fig. 1. Plots of the Green function value in the origin x = 0, i.e. G(0, t) = t−α/2/[2Γ(1 −
β/2)], for different pairs of parameters 0 < α ≤ 2 and 0 < β ≤ 1. Please see Table 1 for the
meaning of labels.

Table 1. Label list for Figure 1. The numbers in brackets refer to the corresponding formula
of Green function G(x, t) along the text.

0 < α ≤ 2 0 < α = β < 1 0 < α ≤ 2 α = β = 1
0 < β < 1 α $= β = 1

G(x, t) (28) (32) (33) (22)
slow a) α = 0.5;β = 0.8 d) α = β = 0.5 e) α = 0.5;β = 1
normal b) α = 1 ;β = 0.8 g) α = β = 1
fast c) α = 1.5;β = 0.8 f) α = 1.5;β = 1

but also in these cases closer is β to 1 closer is G(0, t) to case g). Finally the second
linear case b) is very close to g) at the initial instants and it separates when time
increases but since in this case β < 1 the behaviour of G(0, t) is of the same type of
slow diffusion.
However, noting from (29) thatMν(0) = 1/Γ(1−ν), Green function (28) in x = 0

is G(0, t) = t−α/2/[2Γ(1 − β/2)], so that H(0) = 1/[2Γ(1 − β/2)]. This means that
N = Γ(1 − α/2)/Γ(1 − β/2). Then the special case N = 1 is recovered also for
anomalous diffusion processes with α = β. To conclude, the estimation of the correct
diffusive process and then of the correct Green function G(x, t) has an important role
on the determination of constant N which results on the nonlinearity of the equa-
tion, see (47). These differences on nonlinearity are not only due to the slow, fast
or linear nature of the anomalous diffusion process, as intuitively one aspects, but
also to the ratio α/β and have influence on the stability of the solution. A detailed
stability analysis for solution of (46) can be performed, as a further development of
the present work, by adopting the same numerical schemes discussed for equations
(18), (19), (20) [8,18–21].
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5 Conclusion

In the present paper the problem of the derivation of the evolution equation for the
flame ball radius is addressed and a recent method [9,10] is discussed. A general non-
Markovian time fractional diffusion process [13,14] is considered and the effects of
fractional diffusion on stability of solution are also picked out. This new method is
based on the idea to split the flame ball in two components: the inner kernel, which
is driven by a Poisson-type equation with a general polynomial forcing term, and the
outer part, which is driven by a generalized anomalous diffusion process that holds
for diffusion in fractional diffusive media. The evolution equation for the radius of the
flame ball is determined as the evolution equation for the interface that matches the
solution of the inner spherical kernel and the solution of the outer diffusive part. This
method highlights that previous methods were based on classical Gaussian diffusion.
The resulting equation turns out to be a nonlinear fractional differential equation
whose fractional order of derivation emerges to be related to the diffusion process.
In fact, the exponent of the power law of displacement variance 〈x2〉 ∼ tα drives the
order of fractional derivation which turns out to be 1 − α/2 and it reduces to 1/2
when the diffusion process is Gaussian, i.e. α = 1.
What concerns the stability of the solution it is emerged that it is strongly in-

fluenced by the diffusion process, in particular by the law of the variance growing
and the shape of the Green function. Such influence is displayed by differences on
nonlinearity.
This method strongly simplifies and generalizes previous derivations. In fact since

a polynomial forcing and anomalous diffusion are considered, literature equations
(18), (19), (20) [5–8] are recovered when the forcing and the diffusion process are
appropriately chosen.
The main remarkable aspect of this new method is that, due to its clear and simple

derivation, it can be a useful tool to further development and advance in the research
on this topic helping to overcame the difficulties that the current models meet. In
fact, the mathematical simplicity of equation foundation can highlight new promising
way to find analytical and numerical solution, solution properties as well as to analyse
solution stability which is of paramount importance for establishing the experimental
configuration to observe the steady flame ball originally predicted by Zeldovich.

The research is funded by Regione Autonoma della Sardegna (PO Sardegna FSE 2007–
2013 sulla L.R. 7/2007 “Promozione della ricerca scientifica e dell’innovazione tecnologica
in Sardegna”). The author would like to thank Professor Francesco Mainardi for advice and
encouragement and GNFM-INdAM (Progetto Giovani 2010) for support.

References

1. Ya.B. Zeldovich, Theory of Combustion and Detonation of Gases (USSR Academy of
Sciences, Moscow, 1944)

2. P.D. Ronney, Combust. Flame 82, 1 (1990)
3. P.D. Ronney, K.N. Whaling, A. Abbud-Madrid, J.L. Gatto, V.L. Pisowicz, AIAA J. 32,
569 (1994)

4. P.D. Ronney, M.S. Wu, H.G. Pearlman, K.J. Weiland, AIAA J. 36, 1361 (1998)
5. G. Joulin, Combust. Sci. Tech. 185, 99 (1985)
6. J.D. Buckmaster, G. Joulin, P.D. Ronney, Combust. Flame 79, 381 (1990)
7. J.D. Buckmaster, G. Joulin, P.D. Ronney, Combust. Flame 84, 411 (1991)
8. V. Guyonne, P. Noble, J. SIAM Appl. Math. 67, 854 (2007)



Perspectives on Fractional Dynamics and Control 117

9. G. Pagnini, in Proceedings of FDA10. The 4th IFAC Workshop Fractional Differentiation
and its Applications, edited by I. Podlubny, B.M. Vinagre Jara, YQ. Chen, V. Feliu
Batlle, I. Tejado Balsera (ISBN 9788055304878, 2010), Article no. FDA10-063

10. G. Pagnini, Fract. Calc. Appl. Anal. 14, 80 (2011)
11. J. Klafter, I.M. Sokolov, Physics World August, 29 (2005)
12. I.M. Sokolov, J. Klafter, A. Blumen, Physics Today November, 48 (2002)
13. A. Mura, M.S. Taqqu, F. Mainardi, Physica A 387, 5033 (2008) http://arxiv.org/
abs/0712.0240

14. A. Mura, G. Pagnini, J. Phys. A 41, 285003 (2008) http://arxiv.org/abs/0801.4879
15. F. Mainardi, G. Pagnini, Fract. Calc. Appl. Anal. 4, 153 (2011)
16. R. Gorenflo, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics,
edited by A. Carpinteri, F. Mainardi (Springer-Verlag, Wien and New York, 1997),
p. 223, http://arxiv.org/abs/0805.3823

17. C.P. Li, Z.G. Zhao, Eur. Phys. J. Special Topics 193, 5 (2011)
18. J. Audounet, J.-M. Roquejoffre, in ESAIM: Proceedings Fractional Differential Systems:
Models, Methods and Applications, edited by D. Matignon G. Montseny, Vol. 5 (SMAI,
Paris, 1998), p. 15, http://www.emath.fr/proc/vol.5/

19. J. Audounet, J.-M. Roquejoffre, H. Rouzaud, Math. Modelling Numer. Anal. 36, 273
(2002)
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