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a b s t r a c t

It is well known that turbulent dispersion influences chemical reactions and that computation of
reactant concentrations or mean chemical reaction rates can suffer of serious error when small-scale
atmospheric processes’ effects on chemical transformation are neglected. A quantity that gives a measure
of the influence of turbulent dispersion on second-order chemical reaction rates is the intensity of
segregation. A nonparametric estimator based on the kernel method aimed at measuring the intensity
of segregation is proposed. Numerical benchmark tests, in the case of a Gaussian plume, are performed to
study the suitability of this technique. The estimator works well, especially for small and moderate
separation from the plume centreline and generally in the smooth parts of the estimated function. The
effective reaction rate is computed and the percentage error emerges to be less than 5% in the best
estimation intervals, and less than 40% in the worst. A method to reduce percentage error is introduced
and improved performances are observed. The estimator proposed turns out to be particularly suitable
for Lagrangian air quality modelling because it permits conservation of the grid independence.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The present study is motivated by the importance to understand
the effects of turbulent mixing on atmospheric chemical reactions.
This subject, besides theoretical aspects, is important for environ-
mental problems, e.g. air quality modelling.

The atmosphere is turbulent and turbulent dispersion drives the
mixing of reactive scalars. It is well known that the ‘‘goodness of
mixing’’ is a fundamental factor in chemical reactions and that the
optimal condition for chemical reactions to act is the uniform
distribution of reactants. This ‘‘goodness of mixing’’ is measured by
a statistical quantity called intensity of segregation (Danckwerts,
1952). Inhomogeneous mixing due to turbulence generates the
segregation of species, and its role is not negligible when chemical
time-scales are comparable or less than the turbulent time-scale. The
ratio of turbulent and chemical time-scales is called the Damköhler
number. In this case turbulent motion influences the mixing of
reactants before they react (Vinuesa and de Arellano, 2005). Under
typical atmospheric conditions, the reactions of hydroxyl radicals and
the reactions of peroxy radicals with NO are influenced by turbu-
lence. Several second-order chemical reactions affected by atmo-
spheric turbulence are given by Stockwell (1995). The segregation of
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species can cause a decrease of reaction rate if reactants are non-
premixed or an increase if they are premixed (see e.g. duP. Donaldson
and Hilst, 1972; Galmarini et al., 1995; Molemaker and de Arellano,
1998; de Arellano, 2003; de Arellano et al., 2004; Vinuesa and de
Arellano, 2005). Generally, in air quality problems, reactants are
non-premixed because they can come from different sources or
because one is emitted from a source and the other is already present
in the environment. Here only the non-premixed case is considered.

Numerical Eulerian atmospheric models divide the spatial
domain in boxes and the governing equations are solved in the
points of this grid. In the case of a reactive plume, the larger spatial
scale of the intensity of segregation is the mean plume size.
Generally, after the emission, instantaneous and homogeneous
mixing of reactants is assumed. This artificial dilution leads to an
initial underestimation of NOx and other primary emitted species
and overestimation of secondary products such as O3, HO and PAN.
For these reactions the model accuracy is strongly limited and
a method to include chemical segregation is needed (Molemaker
and de Arellano, 1998; Vinuesa and de Arellano, 2005). Serious
errors can be made in estimation of reactant concentrations (de
Arellano, 2003), or mean chemical reaction rates (Komori et al.,
1991), when small-scale atmospheric process effects on chemical
transformations are neglected. From above analysis emerges that
the subgrid problem arises to model turbulence–chemistry inter-
relation expressed by the intensity of segregation. Further investi-
gations on this topic are necessary.
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The analytical solutions of the advection–reaction–diffusion
equation can be adopted, but to find solutions for general situations
is a very difficult task, both for first (Cokca, 2003) and second-order
reactions (Rubio et al., 2008).

It is well known that besides Eulerian models there are
Lagrangian models. The Lagrangian approach permits to study
dispersion in very general circumstances, both in respect of atmo-
spheric stability and source types. However, in many cases, in
Lagrangian framework the concentration fields are estimated by
counting the number of particles in a rectangular volume (box
counting) and the choice of the width and the position of these boxes
influences the computation (de Haan, 1999). Recently, in order to
have totally grid-free Lagrangian models, successful applications of
kernel method for concentration estimations appeared in literature,
e.g. (Lorimer, 1986; Lorimer and Ross, 1986; de Haan, 1999; Davakis
et al., 2003; Vitali et al., 2006; Monforti et al., 2006).

The kernel method is a nonparametrical technique where, differ-
ently from classical parametric approach, no assumptions are made on
the statistics of the underlying data. The principal aim of the present
analysis is to study the suitability of the kernel method to estimate the
intensity of segregation in chemical reactions in inhomogeneous
mixing, in particular its profile inside a reactive plume/puff.

Concerning Lagrangian modelling, Gaussian or analytical models,
which give formulae for the concentration field only in very simplified
situations, have been substituted by complex stochastic models,
which give the opportunity to study dispersion in several different
conditions even if the concentration field is not analytically
computable. The development of the kernel method, in order to
compute the concentration fields produced by complex Lagrangian
models, permits the analysis of pollutant dispersion in real situations
(e.g. Davakis et al., 2003). In analogy with this, in the present paper I do
not propose an approximated analytical model or some parameteri-
zations of the intensity of segregation that hold only in some partic-
ular cases, but a statistical method to compute the intensity of
segregation generated by complex Lagrangian models in real situa-
tions. In the same spirit of concentration field computation, the new
estimator is straightforwardly applicable in Lagrangian air quality
modelling with any type of source. It overcomes the grid-size problem
because it is a grid-free approach. This opportunity to measure the
intensity of segregation of a complex Lagrangian model with grid
independency is the key and novel aspect of the present research.

The rest of the paper is organized as follows. In Section 2 the
background and some previous approaches are briefly reviewed. In
Section 3 the mathematical formulation of the nonparametric
estimation proposed is derived and a couple of remarks on it are
highlighted. In Section 4 numerical tests to study the efficiency of
the estimations are performed in order to reproduce the intensity
of segregation function obtained by Galmarini et al. (1995) with
a Gaussian reactive plume. In Section 5 the results are discussed
and the conclusions are given.
2. Background and some previous approaches

Let a and b be two reactive species so that aþ b /
k

products,
where k is the reaction rate. Let c ¼ C þ c0 where c is the concen-
tration, C the average concentration and c0 the concentration fluc-
tuation of a generic reactive scalar. The instantaneous concentration
of a is given by

vca

vt
þ v

vxi
ðuicaÞ � Da

v2ca

vxivxi
¼ �kcacb; (1)

where t, x ˛ R3, u ˛ R3 and Da are time, space, velocity field and
molecular diffusivity of a, respectively. In the case of an incom-
pressible flow, from averaging it follows that
vCa

vt
þUi

vCa

vxi
þ v

vxi
hu0ic

0
ai�Da

v2Ca

vxivxi
¼�k

h
CaCbþ

D
c0ac0b

Ei
¼�k½1þIS�CaCb

¼�keff CaCb;

(2)

where IS and keff are the intensity of segregation and the effective
reaction rate, respectively, and they are defined as

IS ¼

D
c0ac0b

E
CaCb

¼
R0ab

CaCb
¼

Rab

CaCb
� 1; keff ¼ k½1þ IS�; (3)

Rab ¼ Cca(x)cb(x)D and R0ab(x) ¼ Cc0a(x)c0b(x)D are the correlations of
concentration and concentration fluctuations, respectively, and
they are related by Rab ¼ R0ab þ CaCb. The same is for the reactant b.
The lower bound of IS is�1, when vC/vt¼ 0, and IS becomes positive
only when the species are premixed before being introduced in the
fluid flow (de Arellano, 2003). Because of here only non-premixed
reactants are considered, hereinafter �1 � IS � 0. A non-null
segregation means a non-uniform distribution of chemical species
and then a concentration gradient. In inhomogeneous mixtures, the
reaction rate is not a constant but it depends on the level of the
‘‘goodness of mixing’’ and the intensity of segregation is a statistical
measure of this ‘‘goodness’’ (Danckwerts, 1952; duP. Donaldson and
Hilst, 1972).

The first work on the statistical theory of turbulent chemical
reactions is the one by Corrsin (1958). For further theoretical devel-
opments see Hill (1976), Pope (1985), Dopazo et al. (1997) and for
models of second-order chemical reactions in turbulent flows Lamb
and Shu (1978), Shu et al. (1978), Crone et al. (1999), van Dop (2001).

From the statistical theory of marked particles, if they are
assumed to be one-chemical component, the average concentration
and mean-square concentration are (Komori et al., 1991)

hcðx; tÞi ¼ Cðx; tÞ ¼
Z

p1ðx; tjx0;0ÞSðx0Þdx0; (4)

D
c2ðx;tÞ

E
¼
D

cð1Þðx;tÞcð2Þðx;tÞ
E

¼
Z

p2ðx;x;tjxð1Þ0 ;xð2Þ0 ;0ÞSð1Þðxð1Þ0 ÞS
ð2Þðxð2Þ0 Þdxð1Þ0 dxð2Þ0 ;

(5)

where p1 and p2 are the Lagrangian density function for one particle
and two particles, respectively, S(i)(x(i)

0 ) is the source distribution
of particle i at time t¼ 0 and position x(i)¼ x(i)

0. If the reactants a and
b are initially non-premixed

Rabðx; tÞ ¼
D

caðx; tÞcbðx; tÞ
E

¼ 1
2

hD
cð1Þa ðx; tÞc

ð2Þ
b
ðx; tÞ

E
þ
D

cð2Þa ðx; tÞc
ð1Þ
b
ðx; tÞ

Ei
: (6)

Unfortunately, there is no analytically or computationally efficient
method for obtaining exact solutions of p1 and p2.

There are substantially two research lines in literature: one
focused on the segregation profile in the whole Convective
Boundary Layer (CBL) and the other on its profile inside a reactive
plume. For the first research line there is a great number of papers
in literature, the CBL capacity to generate segregation is studied
mainly by Large Eddy Simulation (LES) of bottom-up and top-down
diffusing reactants. The first calculation of IS for the CBL using LES is
given by Schumann (1989). In his simulation subgrid-scale
contributions of reactions are neglected. Similar simulations are
performed for example in Sykes et al. (1994) and Molemaker and de
Arellano (1998). Besides, Krol et al. (2000) extend the study to
a more complex chemistry scheme that leads to substantially
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different findings. Generally, LES is a valuable calculation of the
atmospheric boundary layer characteristics and its results can be
used to propose parameterizations (Petersen and Holtslag, 1999;
Vinuesa and de Arellano, 2003, 2005). Analogously, in Sykes et al.
(1994) the full closure equations for the second-moment scalar
species correlation are derived and some model of the triple
fluctuation correlation in terms of the first and second moments
are prescribed and compare with LES data. Third-order models are
derived also in Hilst (1998).

The second research line is much more poor of literature. This
poorness follows, clearly, from grid resolution problems. Sykes et al.
(1992) performed the first LES of a turbulent reactive plume.
However, they assume a well-mixing inside the plume and found an
approximately constant value of IS over a large part of the plume
cross-section. However, the prominent role played by the subgrid-
scale mixing for a reactive plume into a neutral atmospheric
boundary layer is shown in LES results by Meeder and Nieuwstadt
(2000), where the intensity of segregation at the plume centreline is
plotted as a function of downwind distance. In this respect the
paper by Galmarini et al. (1995) is interesting. They used a Gaussian
dispersion process that corresponds to a neutral atmospheric
boundary layer and, using the K-theory, derived the concentration
fluctuation correlation as proportional to the product of the
gradient of mean concentration of both reacting species. The pro-
portionality coefficient is dependent on the turbulent diffusivity K,
the Damköhler number and some experimentally determined
constants. They found that IS inside the plume is dependent on the
distance from the plume centreline. A similar closure is derived in
Aguirre et al. (2005) where the dispersion process is driven by a LES
coupled with a subgrid Lagrangian stochastic model and the
chemical mechanism is evolved in time dividing the domain in
boxes, selecting randomly particle pairs and then evolving particle
concentration. In this last paper, the proportionality coefficient is
chosen in order to obtain the best fit. In Karamchandani et al. (2000)
the results of a Gaussian based dispersion model with a chemical
mechanism and a model of the intensity of segregation are shown.
However, no study of the variation of IS inside the plume cross-
section is shown. To conclude, other approaches are the so-called
Conditional Moment Closure (CMC) (Klimenko and Bilger, 1999)
and the Stochastic Field method (Valiño, 1998). This last is used in
(Garmory et al., 2006) to study the micromixing effects in a reacting
plume. The equation includes instantaneous chemical reaction rates
so that no concentration fluctuation correlation is prescribed.

Finally, in all the briefly described approaches the Eulerian
equations of the velocity field are closed using the K-theory and
some criticism on using this theory in diffusion problems involving
nonlinear chemical reactions is discussed by Lamb (1973), in
particular in the vicinity of strong, localized sources such as smoke-
stacks, highways etc.. Promising indications emerged from all
approaches, but in certain cases, grid resolution and subgrid
assumptions have some effects on the model prediction, as shown
in (Chock et al., 2002) for a reactive plume under convective
conditions.

In order to overcame this problem, in what follows a grid inde-
pendent estimator based on kernel method aimed at measuring the
intensity of segregation is proposed. Moreover, this independence
makes the method particularly useful for analysing data obtained by
Lagrangian modelling, which is the most suitable approach for
studying the small-scale processes considered here.

3. Nonparametric estimators

The average concentrations Ca(x) and Cb(x) and the concentra-
tion correlation Rab(x) can be nonparametrically estimated using
the kernel method (Hall and Patil, 1994; Hall et al., 1994; Pope,
2000). Let the symbol ^ indicate the nonparametric estimator, then
for an ensemble of N particles, each located in xi with i ¼ 1;.;N,

bCðxÞ ¼ PN
i¼1 cðxiÞK

�
x�xi

h

�
PN

i¼1 K
�

x�xi
h

� ; (7)

bRabðxÞ ¼
PN

i¼1 caðxiÞcbðxiÞK
�

x�xi
h

�
PN

i¼1 K
�

x�xi
h

� ; (8)

where, in (7), c(xi) stands for ca(xi) (or cb(xi)) and it is the value
assumed by the concentration field of the chemical compound a (or
b) in the point xi, and it is used to compute bCaðxÞ (or bCbðxÞ) that is
the estimation of the average concentration Ca(x) (or Cb(x)). In the
present study the values of c(xi) are assumed given and only their
statistical analysis is considered. However, they can be obtained, for
example, as the outputs of the concentration field in the points xi

computed by an air quality model. In both (7) and (8), h(N) > 0 is
the bandwidth parameter, h(N) / 0 as N / N, and K is a d-variate
kernel function so that K(x) � 0,

R
KðxÞdx ¼ 1 and

R
K2ðxÞdx < N.

It is easy to recognize in (7) and (8) the usual weighted mean
formulae, where the kernel function K is the weight of each i-th
datum and it is based on the separation x � xi. More, in the case of
a uniform concentration distribution the weight function becomes
a constant, each point has the same importance K ¼ const., and
formula

PN
i¼1 ,=N is recovered.

Finally, from (7) and (8), the nonparametric estimators of keff

and IS are

bkeff ¼ k
h
1þbIS

i
; bIS ¼

bR0abbCa
bCb

¼
bRabbCa
bCb

� 1: (9)

3.1. Remarks on bRabðxÞ

The estimator bRabðxÞ defined in (8) requires some remarks.
For very large values of x ¼ jxj the estimator bRab can become

undefined. In fact, the kernel function K goes to zero for any h > 0
and sufficiently large x, then the ratio in (8) becomes 0/0. Moreover,
even if well-defined, the estimator bRab can be quite accurate for
small and moderate values of x but highly inaccurate for large x.
This last problem can be solved for a monotonic decreasing corre-
lation function stating its value equals to zero for x > xc (xc > 0)
(Hall and Patil, 1994). However, in the present application this
problem cannot be solved in this simple way. In fact, the correlation
function is supposed to decrease from 0 to a negative value � �1
and then to grow up to 0. To establish the limit-value xc is more
difficult.

Moreover, when the function to estimate is not monotonic
another problem arises around its maximum/minimum points. In
fact, in the one-dimensional case, deriving in space formula (8) gives

bRabðxÞ ¼
PN

i¼1 caðxiÞcbðxiÞ
dKðx�xiÞ

dxPN
i¼1

dKðx�xiÞ
dx

�
dbRab

dx

PN
i¼1 Kðx� xiÞPN

i¼1
dKðx�xiÞ

dx

: (10)

Let x ¼ xM be the maximum/minimum point, then from (10) it
follows that

bRabðxMÞ ¼
PN

i¼1 caðxiÞcbðxiÞ
dKðx�xiÞ

dx

���x¼xMPN
i¼1

dKðx�xiÞ
dx

���x¼xM

: (11)

Now, by definition the kernel functions K(x) are symmetrical
probability density functions with zero mean. From this it follows
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that the maximum, and then the mean, of functions K(x � xi) is
located at x ¼ xi, as one expects from a weighted mean interpre-
tation in order to give more importance to data close to the point
under consideration, i.e. x. But it follows also that dK(x � xi)/dx ¼ 0
in x ¼ xi, and this brings some consequence. In fact, in formula (11)
the non-zero addenda, in both sums, are only those with xi s xM,
that are the less significant data because they are not located in the
point under consideration, i.e. x ¼ xM. This remains true for a set of
data located in xixxM . Then, a reduction of performance of the
estimation around the maximum/minimum point x ¼ xM is
expected, because the most significant data are lost. So, even if in
general one expects that the enlarging of N improves the estimator
performances, the opposite can occur around the maximum/
minimum points and dependence on the data set size N arises, as
a consequence of the higher statistical weight of data located in
xxxM .

In the following simulations, the first problem, when x is large, is
practically not meet, while the second problem emerges and the
dependence on N is studied.

3.2. The choice of the kernel function K and the bandwidth h

The kernel function K can be chosen using the following
physical arguments. The concentration field is related to the
particle probability density function. In fact, let N(x) and V be the
number of particles located in x and the volume under con-
sideration, respectively, then the concentration field is
cðxÞfNðxÞ=V . However, CNðxÞDf½

R
pðxjx0ÞSðx0Þdx0�dx (Section 2),

finally the concentration field c is homogeneous if and only if
p(xjx0) is constant all over the volume V. In (8) the spatial
inhomogeneity is totally included in the kernel function K, then,
from the above arguments, a physically sound choice of the
kernel function is

KðxÞ ¼
Z

pðxjx0ÞSðx0Þdx0: (12)

From (12) it emerges that, in the physical condition of uniformly
distributed particles, a homogeneous concentration field is obtained.

Generally, h is chosen as an estimator performing parameter
(de Haan, 1999; Vitali et al., 2006). However also an optimal
bandwidth can be mathematically derived (Hall et al., 1994; Hall
and Kang, 2005; Pope, 2000).

In fact, let Q be the function to be estimated and bQ its estima-
tion. Following (Pope, 2000, x12.6.3–4), the error dQ in the kernel
estimation is

dQ ¼ bQ � Q ; (13)

which is composed by a deterministic part BQ ¼ CdQD called bias and
a stochastic part with zero mean, unit variance and amplitude SQ

dQ ¼ BQ þ SQ x; hxi ¼ 0;
D

x2
E
¼ 1: (14)

The bias BQ arises because the estimation is based on data that
are not located in the point under consideration, the statistical error
SQ arises from the finite sample size, i.e. N < N. The mean-square
error in the kernel estimation turns out to beD

d2
Q

E
¼ B2

Q þ S2
Q : (15)

In a d-dimensional case, it is possible to prove that (Pope, 2000;
de Haan, 1999)

B2
Q x

1
4

q2h4
h
V2Q

i2
þO

�
h4
�
; (16)
and

S2
Q x

g

Nhd
; (17)

whereZ
xixjKðx;hÞdx ¼ qh2dij;

Z
Kðx; hÞ2dx ¼ g

hd
: (18)

Substituting (16) and (17) in (15) givesD
d2

Q

E
x

1
4

q2h4 þ g

Nhd
: (19)

The optimal bandwidth is obtained from (19) setting its
derivative with respect to h equals zero and it turns out to be
determined as

hx

�
d

g

q2

�1=ðdþ4Þ
N�1=ðdþ4Þ: (20)

Since in the following simulations one-dimensional case is
considered, the size of the bandwidth is stated as

hfN�1=5: (21)

From (19) and (20) it is possible to observe that the quantity
CdQ

2
D

1/2 goes to zero when N goes to infinite and, since h is a function
of N (20) while K is not, it follows that the error in kernel estimation
is mainly controlled by h than by K, which controls only the
constant factors g and q (18). Moreover, using the idea of equivalent
bandwidths (de Haan, 1999, x4.2), given the optimal bandwidth h1

for a kernel K1, it is possible to compute exactly the optimal
bandwidth h2 for a second kernel K2:

h1

h2
¼
"

g1=q2
1

g2=q2
2

#1=ðdþ4Þ

: (22)

Finally, in general, nonparametric estimation is stronger
dependent on the proper choice of the bandwidth h, than on the
choice of the shape of the kernel function K, and it plays the role of
a smoothing parameter (de Haan, 1999).
4. Numerical tests

4.1. Construction of an artificial dataset and estimator efficiency

In this section the estimator bIS (9, 7–8) is numerically tested.
Before to proceed an artificial dataset with known statistics must be
constructed. To construct this dataset the function IS computed by
Galmarini et al. (1995) is considered as a reference. The authors
plotted in their Fig. 4 the profile of IS inside the cross-section of
a Gaussian reactive plume dispersed into the atmospheric neutral
boundary layer. The plot shows IS as a function of the distance from
the plume centreline r scaled on the plume standard deviation sr at
different distances from the release point. Their function IS is
sufficiently well reproduced by

IS ¼ �A
r2

s2
r

exp
�
� r2

s2
r

�
; (23)

where in order to simulate four different distances from the
source A ¼ 0.5, 1, 2, 4 and the lower bound �1 is used when
necessary, see Fig. 1. The values of A move from 4 to 0.5 when the
distance from the source increases. A similar functional form of IS
has been given also in Rubio et al. (2008) to fit available data of
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segregation of bimolecular reactive processes in porous media.
The intensity of segregation is zero when r ¼ 0 because solely the
reactant brought by the plume is present and when r=sr[1
because solely the environmental reactant is present. The
minimum value of IS occurs when r=srx1, it equals �1 when
measured near to the source and it increases when the distance
from the source increases, because the reactants become more
and more uniformly mixed. This well understandable situation is
chosen as a reference paradigm to test the nonparametrical
estimator proposed in Section 3.

Any sketch of the dispersion process, i.e. the cross-section of the
plume at fixed distance from the source, is reproduced generating
N random variables {ri;i ¼ 1, N} from a Gaussian density with zero
mean and variance Cr2

D ¼ sr
2. In order to study the dependence on
Fig. 2. The exact function IS (dotted lines) and the estimator bIS in the four numerical tests: A
the size of the dataset N, the simulations are performed with:
N ¼ 100, N ¼ 1000 and N ¼ 50 000.

Let zi be the position of the i-th particle and Z the plume cen-
treline, then zi ¼ ri þ Z and Cz2

D ¼ Cr2
D þ Z2. Without loss in gener-

ality it can be stated Z ¼ 0 and sr ¼ sz ¼ 1. For each zi value a pair of
correlated variable {ca(zi), cb(zi)} are randomly generated by
a bivariate Gaussian density with given marginal mean concen-
trations Ca(z) ¼ Cca(z)D, Cb(z) ¼ Ccb(z)D and correlation of concen-
tration fluctuations R0ab(z) ¼ Cc0a(z)c0b(z)D. The correlation function is
defined as R0ab(z) ¼ r(z)sa(z)sb(z) and formula (3) becomes

IS ¼ r
sasb

CaCb
; (24)

where r is the correlation coefficient, s2
a ¼ Cc02aD and s2

b ¼ Cc02bD. For
mathematical simplicity and random generation reasons, it is
stated

s2
a¼C2

b ¼exp
�
�z2

s2
z

�
þ1; s2

b¼C2
a ¼exp

�
� z

sz

�
þ1; (25)

so that r(z) ¼ IS(z). The kernel function is chosen Gaussian as the
particle position density function

K
	

z� zi

h



¼ 1ffiffiffiffiffiffiffi

2p
p

h
exp

(
� ðz� ziÞ2

2h2

)
; (26)

and the bandwidth parameter h¼N�1/5sz, in agreement with above
discussion (Section 3.2), where the factor sz is for dimensional
reasons. Finally, the physical bounds �1 � bIS � 0 are considered. In
Fig. 2 it is shown the comparison between the exact function IS (23)
and the estimator bIS for the three cases: N ¼ 100, N ¼ 1000 and
N ¼ 50 000. The collective plots, the four curves IS for the same
values of N, are shown in Fig. 3. Generally, the estimation improves
when the number of particles increases. For cases N ¼ 1000 and
N ¼ 50 000, the comparison is good and the estimator captures
qualitatively the behaviour of the exact function. When N ¼ 1000
¼ 0.5, 1, 2, 4. Open circle N ¼ 100, open square N ¼ 1000, black diamond N ¼ 50,000.



Fig. 3. Collective plot of the exact functions IS (dotted lines) and the estimator bIS in the
four numerical tests: A ¼ 0.5, 1, 2, 4. Open circle N ¼ 100, open square N ¼ 1000, black
diamond N ¼ 50,000.
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the estimator works very well for small and moderate values of r/sr

and becomes inaccurate for large values. However, looking plots for
both N¼ 1000 and N¼ 50 000, this less of accuracy is mainly due to
the reduction of data for increasing r/sr than to the first remark in
Section 3.1. In fact, in this case there are less data when r/sr increases
as follows from the Gaussian particle distribution. Moreover, as
remarked in Section 3.1, the dependency of the estimation on
the sample size N around the minimum point is confirmed by
the reduction of performance from N ¼ 1000 to N ¼ 50 000 around
r/sr ¼ 1. More, when the exact function is steeply decreasing (or
increasing), as cases A ¼ 2 and A ¼ 4, the estimator works less good
in particular when N¼ 1000, because of the smoothness is driven by
a bandwidth with a fixed functional form for all four cases. However
this lack can be reduced using opportune sub-ensembles of the
dataset, as discussed below in Section 4.2.

The main factor of chemical kinetic is the reaction rate k that for
inhomogeneous mixing is replaced by an effective reaction rate
keff ¼ k[1 þ IS] (9). To estimate the efficiency of the intensity of
segregation estimator the percentage error of keff can be introduced
D ¼
keff � bkeff ¼ IS �bIS: (27)
keff 1þ IS

In Fig. 4 the percentage error (27) is plotted. It confirms that when
N increases the accuracy increases. Moreover, when r=srx1 the case
N¼ 50 000 has bad performances. In the first two cases A¼ 0.5, 1 the
estimator with N ¼ 1000 is surprisingly well working, generating
a percentage error less than 5% for small and moderate values of r/sr

and around 10% in the worst region, the same occurs, but with
exchanged intervals, with N ¼ 50 000. The case A ¼ 2 presents when
N ¼ 1000 an increasing percentage error that, however, remains
bounded under 40%, while when N ¼ 50 000 a high percentage error
occurs for small r/sr (up to 100%) and a very low error�5% for large
r/sr. In the last case, A ¼ 4, the percentage error is �40% and �10%
for large r/sr when N¼ 1000 and N¼ 50 000, respectively. Except for
a steep increasing region around r=srx0:5 where a 100% error
occurs and a perfect estimation interval D¼ 0 around r=srx1. These
last two particular results are just mathematical consequences of
the physical limit fIS;bISg � �1. In fact, when r=srx0:5 it isbIS ¼ �1
and then D ¼ [IS � (�1)]/(1 þ IS) ¼ 1, and when r=srx1 it is
IS ¼ bIS ¼ �1 for construction. Finally, the significance of this two
extreme results is few and an efficiency similar to the previous case
A ¼ 2 can be considered.

After the above analysis, what concern the performance depen-
dence on the sample size N, it is possible to conclude that the
ensemble data N ¼ 1000 is sufficiently good performing taking into
account also the computational effort required by the case N¼ 50 000.
4.2. Sub-ensemble statistics

In this section a method to improve the estimator performance
is shown. This method consists by using a sub-ensemble of the
dataset, instead of the whole, for each point that belongs to a crit-
ical interval. This sub-ensemble includes only the data that are
more closed to the point under consideration. It follows that for
each point a different dataset is used.

Looking at Figs. 2–4, one observes that with N ¼ 1000, the
performances in the interval 0� r/sr� 0.5 when A¼ 2 and A¼ 4 are
reduced with respect to those when A ¼ 0.5 and A ¼ 1. Since the
curve to be estimated in these cases is steeply decreasing, the
reduction of efficiency is due to the data located in distant points. In
other words, to a high gradient follows a high value difference
between points and then data from distant locations invalidate the
estimation.

The proposed idea of sub-ensemble is to use only those data that
are more closely located to the point under consideration. If the
interval 0 � r/sr � 0.5 is considered then for each r, as a case study,
only the sub-ensemble of data ri such that jr – rij/h � 0.5 is used to
compute the estimation by (9), (7)–(8).

The results are shown in Fig. 5 where the previous estimation
with the whole dataset and the new with the sub-ensemble data
for the interval 0 � r/sr � 0.5 are plotted together and compared
with the exact function. The estimator based on the sub-ensemble
data has a better performance in the interval under consideration.
From this it follows that also the percentage error is reduced in the
same range of r/sr, as is shown in Fig. 6.

Finally, an improvement of the estimator performance can be
obtained using for each point of a critical interval only that sub-
ensemble of data which are more closed to the considered point.
This last result is a remarkable property of the kernel method
that gives support to the present suggestion to use the
nonparametric approach to measure the intensity of segregation
of second-order chemical reactions in Lagrangian air quality
modelling.



Fig. 4. Plot of the percentage error D in the four numerical tests: A ¼ 0.5, 1, 2, 4. Open circle N ¼ 100, open square N ¼ 1000, black diamond N ¼ 50,000.
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5. Discussion and conclusions

In the present paper the kernel method is used in order to propose
a nonparametric estimator of the intensity of segregation in second-
order chemical reactions and its efficiency is explored. Since the
estimator proposed is grid-free it is particularly suitable for those
grid-free Lagrangian air quality models that, using the kernel method,
have been recently formulated for concentration field computation.
The probability density of the positions of the particles bringing the
reactants is chosen as kernel function. This fact permits the estimator
to take into account inhomogeneity on a physical ground. A
remarkable feature of this approach is that a statistical quantity
generated by an inhomogeneous ensemble, such as the intensity of
segregation, is computed along the realization of the flow. This is
really important for the evolution in time of chemical transformations
during the running of each simulation of the dispersion process.

Numerical tests are performed with an artificial dataset generated
to reproduce the intensity of segregation function inside the cross-
section of a reactive plume with Gaussian distribution profile, at
different distances from the source, as computed by Galmarini et al.
(1995) in a neutral atmospheric boundary layer. The estimator has
been tested for three sample sizes: N¼100, N¼1000 and N¼50 000.
Generally the performance improves when N increases. However, as
remarked in Section 3.1, a dependence on N can arise around the
maximum/minimum points. This fact has been observed in simula-
tions. Balancing accuracy and computational costs, the dataset with
N ¼ 1000 is the preferable one. The estimator works well especially
for small and moderate separations from the plume centreline and
generally in smooth intervals of the function. The effective reaction
rate is computed and the percentage error emerges to be less than 5%
in the best estimation ranges and less than 40% in the worst. A
method to reduce percentage error in the worst cases is introduced. It
consists in using the sub-ensemble of data which includes only those
data that are more closely located to the point under consideration.
As a consequence, for each point a different dataset is used. When this
method is applied to estimate the function in points inside a critical
interval, the performance improves.

These results support the approach proposed here and its
applications in Lagrangian air quality modelling.
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