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Influence of Eulerian and Lagrangian scales on the relative dispersion properties
in Lagrangian stochastic models of turbulence
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The influence of Eulerian and Lagrangian scales on the turbulent relative dispersion is investigated through
a three-dimensional Eulerian consistent Lagrangian stochastic model. As a general property of this class of
models, it is found to depend solely on a param@drased on the Kolmogorov constartg andC,. This
parameter represents the ratio between the Lagrangian and Eulerian scales and is related to the intrinsic
inhomogeneity of the relative dispersion process. In particular, the quayitigg/C, (whereg is the Rich-
ardson constaptaind the temporal extension of th&regime are found to be strongly dependent on the value
adopted forg.
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In the frame of the Eulerian description of turbulence, the Thus, according to Ref.15], the particle separatiofx
Kolmogorov [1,2] theories are based on spatial separationand velocity differencesv are represented by a stochastic
while the natural description in the Lagrangian approach is irdifferential equation(SDE) of the Langevin type. Using the
terms of time elapsing from an initial conditioisee, e.g., above defined scales and a velocity scaleo make the
Ref.[3]). Each description naturally leads to the definition of model nondimensional, the Langevin equation turns out to be
two characteristic scales, sayand 7, for space and time,
respectively. The effects of the two scales on turbulence dy- déx; = Bdv,dt,
namics are particularly evident in the relative dispersion pro-
cess. When the particle separation lies in the inertial sub-
range, the spatial structufEulerian length sca)eaffects the dovi=a;(dv,ox,t)dt+by; (6x,1)dW,, 1)
dispersion featuregsLagrangian properjy[4]. The relative
dispersion in the inertial subrange regime is characterized bywhere dW, is a component of a three-dimensional Wiener
the Richardson law5] and the nondimensional constamt process and3=vr\ ! is recognized as the well known
which should be considered universal even though measurddhgrangian-to-Eulerian scale ratio. In REt4] the SDE co-
values range from 0.06 to [6—9]. efficientsa; andb;; are called the drift and diffusion coeffi-

Lagrangian stochastic mode(tSMs), along with their  cients, respectively. The associated nondimensional Fokker-
utility in dispersion studies, provide a powerful tool for in- Planck equation turns out to be
vestigating some properties of turbulence, as shown in Refs.

[10-13. Its formulation naturally connects Lagrangian and ap J J 9%p
Eulerian statistics through the requirement of statistical Eu- i —ﬁﬁ(évip)— m(aiprij R
lerian consistencywell mixed condition, hereinafter WMC, : ! e

[14,15) of Lagrangian particle trajectories. Accordingly, ) )
model results should be dependent on the valuesaiid~. ~ Wherep is the Lagrangian PDF of the processx,év). To

The aim of this Brief Report is to investigate the propertiesdV0id physical inconsistencies caused by different Ito and
of WMC formulation of LSMs with respect to the parametersStratonOV'Ch mterpretatlons of the stochastic callculus, the
determining changes in the duration and the valug afthe  €NSorb;; must be independent afv [20]. For consistency
Richardsort® regime, as the Lagrangian and Eulerian scaledVith the Lagrangian structure function of the second order,
are modified. bjj= \/55”- . The drift term is retrieved by imposing the Eu-
The basic assumption of the LSM relies on the Mark-lerian statis.tical cons_isteno{WMC) [14], \(vhich is obtained_
ovianity of the velocity process. In fact, in the inertial sub- Py the Novikov relation between Eulerian and Lagrangian
range the Lagrangian acceleration autocorrelation scale is &PFS[21] in combination with the Fokker-Planck equation.
the order of the Kolmogorov time scatg,, which decreases Under this assumption, it turns out that
with increasing Reynolds number, as predicted by the
Heisenberg-Yaglom formula based on the Kolmogorov _dlnpg
theory[4]. This prediction was experimentally confirmed in a= dov; + i ©)
Ref.[16]. Another experimental support for the LSM, in par-
ticular to the WMC, was given in Ref$17,18, where the
Eulerian probability density functio(PDF) is shown to fulfil
the Chapman-Kolmogorov equation underlying the Markov-
ian assumption. Intermittency effects are not considered be- &ipE): _9Pe _ % (4)
cause they are found to be negligible in the LS. dov; ot aox;

2

wherepg is the Eulerian PDF and
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with ®;— 0 as|év|—c. It follows that, for a giverpg (based 10°
on assumed or empirically specified Eulerian statigtieach

solution of Egs(3) and(4) depends solely op, as do all the 102
statistics at all times. It should also be noted that the param:

%)

eter B is a weight of the effect of the intrinsic inhomogeneity < 10t
of the relative dispersion process.

Before proceeding with the analysis of model properties,
it is worth focusing attention on the definition of the appro-

s (Bt

priate scales. It can be observed that there is no genere@ 107

agreemenf22—-25 on the value of the nondimensional pa- Y

rameterf. In fact, if integral measures are considered, the »

value of 8 could depend on experimental configuration and 10

on the kind of flow[24]. A more rigorous definition should 3 . . . . T

be related to inertial subrange features. In the following, this 005 100 100 102 100 1 1o
ratio will be defined in terms of the Kolmogorov constants ¢

Ck andCy. As the interest here is on inertial subrange prop-

erties, specific scales should be used. FIG. 1. The nondimensional separation normalize@tt’ as a

function oft in the case®=0.1(0), 0.2(A), 0.5(V), 1 (W), 2 (A),

Considering a separatiari (hereinafter a prime denotes ’ A 4 Y
5(V¥), and 10(#), at fixed initial separatiodx; (t;) =105,

dimensional variablgsin the inertial subrange and a mean
rate of energy dissipatiosl, the Eulerian second order struc-
ture function is[4] turns out to be a constant, insofar as the process of pair
2 djspersion can be_r?garded as tEe moti(.)n. of one partiplr]e rr(]ala—
P A FoN2Bs s 2 tive to a noninertial system, whose origin moves with the
(At AU} =Cy(e1") 78 =20 (Y) 9 other particle. However, for small timessg 7, this motion is
not very different from the motion relative to an inertial sys-
where the second equality is a definition for a Eulerian spatem, whose origin moves at the initial velocity of the same
tial scale\, the angular brackets denote an ensemble aveharticle (Ref.[4] p. 546. The above observation suggests the
age,Auf =u{(x")—uf (X" +r'), r=[r'|, o is the root mean  adoption ofC, as a scale fog, so thatg* can be considered
square of the velocity fluctuations a is the Kronecker as a normalized Richardson constant.
delta. In the inertial subrange, the Lagrangian structure func- Although Cx and C, are universal constants in the fully

tion of the second order is developed turbulence frame, their value is still not well de-
o termined due to experimental difficulties and errors. Values
<Atvi’Atv,-'>=C08’t’5ij2202<—> 5, Ecz)l;]nd in the literature are 1s55C«<3 [26] and 2<Cy<7

S . . ConsideringCx andC, as parameters in a model, varia-
which is similarly a definition for a Lagrangian temporal yons in the range of their experimental indetermination wil
scaler. ) . ) affect the model properties and, particularly, the Richardson
Selecting the normalizing velocity scale=\20, the  constant. This reflects the property expressed by(@qlt is
nondimensional parametgr can therefore be expressed as yortn noting that the dependence of the model onlyn

32 clearly highlights the fact thaj can be determined whe®y
V207 C3 ) .
= = (5)  andC are known. In other words, once a model is chosen in
A Co the WMC class, it can be supposed that a relationship exists

which is equivalent, in homogeneous steady turbulence, t§MC! determineg throughCy andCo.
q ' 9 y ' To investigate the properties expressed in @4.numeri-

the ratio between integral temporal and spatial scédes, . :
for instance, Refg[22-25). Nevertheless, the definition in cal mtegranons of Eq(1) were perfprmed._Because Eq8)
and (4) in general do not determinag; uniquely (see Ref.

Eq. (5) is rather general, because it is not affected by inho- . . , ) :
. . . 8] for a review, a; is chosen in the following as in Ref.
mogeneity or unsteadiness at scales greater than the inert : . :
5]. This choice corresponds to a Gaussian zero mean ran-

subrange, and does not require the introduction of an adve dom velocity field with longitudinal velocity correlation

tion velocity. iven by[29]
The nondimensional Richardsof law [5] reads 9 y
<(5X)2>=g*ﬁzt3! (6) 6X2 1/3
whereg* =g/C,. The quantitiegy* and B characterize the f=1- Sx2+ 1) '

relative dispersion process. It is interesting to observe that

g* is equal to the ratio between the velocity difference of

two particles at fixed timé(dv;)?)=get, on the one hand Equations(1) were solved numerically, and the statis-
(Ref. [4] p. 545, and the Lagrangian structure function of tics were computed using 4Qairs, with the initial rela-
the second ordef(A;)?), on the otherhand. This ratio tive velocity distributed according to((&v/(t}))?)
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FIG. 2. The normalized Richardson constant vs the parameter FIG. 3. The nondimensional separation normalizestt’ as a
B. function oft in the casesdx;(to)=10"% (CJ,M), 1075 (A,A), and

107 (V,¥), for 8=0.1 and 10, respectively.

:Ck(sfw,(témz/s._ The analysis was performed for \ynich clearly highlights the dependence of—ts on
0.1§5s10, according to the ranges @f andC, found in | 8X(to)|. Assuming thafl, and 7 are of the same ordésee,
the literature. _ _ e.g., Ref.[30]) and |ox(ty)|<1, it turns out thatty—tq
In Fig. 1 the quantity((6x)?)/(%t%) is plotted as a func-  —6/g*. Figure 3 confirms this result, while also showing
tion of t for different values ofB at fixed initial separation thatg* does not depend on the initial separation, in keeping
6xi(t0)_=10‘5. The pla}teau indicate§ the existence and theyjith the physical properties of th& regime[4].
extension of thet?’_reglme and provides a measure gf. In this Brief Report it is shown that any given Lagrangian
The value ofg* increases wheng increases, as shown stochastic model based on the well mixed condition depends
in Fig. 2, since an increasing corresponds to a weaker only on the parameteg, the Lagrangian-to-Eulerian scale
Eulerian spatial correlation. Moreover, Fig. 1 shows thakatio. This parameter has been formulated here in terms of
the temporal extension of the inertial regirtie decreases njversal constants characteristic of the inertial subrange,
as B increases. The temporal extension can be estimated  c, andC,. In spite of the fact that these constants are
as the intervaky—tg, wheretg is defined as the intersec- expected to be universal, in the range of error associated with
tion point between the ballistic regime,((ﬁxi’)2> their experimental determination, their variation strongly in-
=Cy(e'|8x'(t5)|)?*'2, and the inertial regime((dx/)?)  fluences the dispersion properties of the model. It can be
=ge't’3/3. The timet} is defined as the intersection point observed that the numerical valuesgf andty—t; refer to
between the inertial regime and the diffusive regime,the specific turbulence model adopted. However, the nondi-
((5xi’)2>=402T,_t’, where T is the integral Lagrangian mensional analysis suggests that the same behavior can be
temporal scale. In nondimensional terms, the temporal exterxpected from the whole class of models based on the WMC
sion turns out to be assumption. Thus, the present result can be considered to be
of general validity within the context of the WMC approach
T, to Lagrangian turbulence modeling.

1/2
3
tg—ts= —( —) ——(|ox(to))*?, 7)
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