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Influence of Eulerian and Lagrangian scales on the relative dispersion properties
in Lagrangian stochastic models of turbulence
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The influence of Eulerian and Lagrangian scales on the turbulent relative dispersion is investigated through
a three-dimensional Eulerian consistent Lagrangian stochastic model. As a general property of this class of
models, it is found to depend solely on a parameterb based on the Kolmogorov constantsCK andC0 . This
parameter represents the ratio between the Lagrangian and Eulerian scales and is related to the intrinsic
inhomogeneity of the relative dispersion process. In particular, the quantityg* 5g/C0 ~whereg is the Rich-
ardson constant! and the temporal extension of thet3 regime are found to be strongly dependent on the value
adopted forb.
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In the frame of the Eulerian description of turbulence, t
Kolmogorov @1,2# theories are based on spatial separati
while the natural description in the Lagrangian approach i
terms of time elapsing from an initial condition~see, e.g.,
Ref. @3#!. Each description naturally leads to the definition
two characteristic scales, sayl and t, for space and time
respectively. The effects of the two scales on turbulence
namics are particularly evident in the relative dispersion p
cess. When the particle separation lies in the inertial s
range, the spatial structure~Eulerian length scale! affects the
dispersion features~Lagrangian property! @4#. The relative
dispersion in the inertial subrange regime is characterized
the Richardson law@5# and the nondimensional constantg
which should be considered universal even though meas
values range from 0.06 to 6@6–9#.

Lagrangian stochastic models~LSMs!, along with their
utility in dispersion studies, provide a powerful tool for in
vestigating some properties of turbulence, as shown in R
@10–13#. Its formulation naturally connects Lagrangian a
Eulerian statistics through the requirement of statistical
lerian consistency~well mixed condition, hereinafter WMC
@14,15#! of Lagrangian particle trajectories. Accordingl
model results should be dependent on the values ofl andt.
The aim of this Brief Report is to investigate the propert
of WMC formulation of LSMs with respect to the paramete
determining changes in the duration and the value ofg of the
Richardsont3 regime, as the Lagrangian and Eulerian sca
are modified.

The basic assumption of the LSM relies on the Ma
ovianity of the velocity process. In fact, in the inertial su
range the Lagrangian acceleration autocorrelation scale
the order of the Kolmogorov time scaleth , which decreases
with increasing Reynolds number, as predicted by
Heisenberg-Yaglom formula based on the Kolmogor
theory @4#. This prediction was experimentally confirmed
Ref. @16#. Another experimental support for the LSM, in pa
ticular to the WMC, was given in Refs.@17,18#, where the
Eulerian probability density function~PDF! is shown to fulfil
the Chapman-Kolmogorov equation underlying the Marko
ian assumption. Intermittency effects are not considered
cause they are found to be negligible in the LSM@19#.
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Thus, according to Ref.@15#, the particle separationdx
and velocity differencedv are represented by a stochas
differential equation~SDE! of the Langevin type. Using the
above defined scales and a velocity scaley, to make the
model nondimensional, the Langevin equation turns out to

ddxi5bdv idt,

ddv i5ai~dv,dx,t !dt1bi j ~dx,t !dWj , ~1!

where dWj is a component of a three-dimensional Wien
process andb5ytl21 is recognized as the well know
Lagrangian-to-Eulerian scale ratio. In Ref.@14# the SDE co-
efficientsai andbi j are called the drift and diffusion coeffi
cients, respectively. The associated nondimensional Fok
Planck equation turns out to be

]p

]t
52b

]

]dxi
~dv i p!2

]

]dv i
~aip!1bi j

]2p

]dv i]dv i
, ~2!

wherep is the Lagrangian PDF of the process~dx,dv!. To
avoid physical inconsistencies caused by different Ito a
Stratonovich interpretations of the stochastic calculus,
tensorbi j must be independent ofdv @20#. For consistency
with the Lagrangian structure function of the second ord
bi j 5A2d i j . The drift term is retrieved by imposing the Eu
lerian statistical consistency~WMC! @14#, which is obtained
by the Novikov relation between Eulerian and Lagrang
PDFs@21# in combination with the Fokker-Planck equatio
Under this assumption, it turns out that

ai5
] ln pE

]dv i
1F i , ~3!

wherepE is the Eulerian PDF and

]~F i pE!

]dv i
52

]pE

]t
2b

]~dv i pE!

]dxi
, ~4!
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with F i→0 asudvu→`. It follows that, for a givenpE ~based
on assumed or empirically specified Eulerian statistics!, each
solution of Eqs.~3! and~4! depends solely onb, as do all the
statistics at all times. It should also be noted that the par
eterb is a weight of the effect of the intrinsic inhomogenei
of the relative dispersion process.

Before proceeding with the analysis of model properti
it is worth focusing attention on the definition of the appr
priate scales. It can be observed that there is no gen
agreement@22–25# on the value of the nondimensional p
rameterb. In fact, if integral measures are considered,
value ofb could depend on experimental configuration a
on the kind of flow@24#. A more rigorous definition should
be related to inertial subrange features. In the following, t
ratio will be defined in terms of the Kolmogorov constan
CK andC0 . As the interest here is on inertial subrange pro
erties, specific scales should be used.

Considering a separationr 8 ~hereinafter a prime denote
dimensional variables! in the inertial subrange and a mea
rate of energy dissipation«8, the Eulerian second order stru
ture function is@4#

^D rui8D ruj8&5CK~«8r 8!2/3d i j 52s2S r 8

l D 2/3

d i j ,

where the second equality is a definition for a Eulerian s
tial scalel, the angular brackets denote an ensemble a
age,D rui85ui8(x8)2ui8(x81r 8), r 5ur 8u, s is the root mean
square of the velocity fluctuations andd i j is the Kronecker
delta. In the inertial subrange, the Lagrangian structure fu
tion of the second order is

^D tv i8D tv j8&5C0«8t8d i j 52s2S t8

t D d i j ,

which is similarly a definition for a Lagrangian tempor
scalet.

Selecting the normalizing velocity scaley5A2s, the
nondimensional parameterb can therefore be expressed a

b[
A2st

l
5

CK
3/2

C0
, ~5!

which is equivalent, in homogeneous steady turbulence
the ratio between integral temporal and spatial scales~see,
for instance, Refs.@22–25#!. Nevertheless, the definition i
Eq. ~5! is rather general, because it is not affected by in
mogeneity or unsteadiness at scales greater than the in
subrange, and does not require the introduction of an ad
tion velocity.

The nondimensional Richardsont3 law @5# reads

^~dx!2&5g* b2t3, ~6!

whereg* 5g/C0 . The quantitiesg* andb characterize the
relative dispersion process. It is interesting to observe
g* is equal to the ratio between the velocity difference
two particles at fixed timê(dv i)

2&5g«t, on the one hand
~Ref. @4# p. 545!, and the Lagrangian structure function
the second order̂(D tv i)

2&, on the otherhand. This rati
03730
-

,

ral

e

s

-

-
r-

c-

to

-
tial
c-

at
f

turns out to be a constant, insofar as the process of
dispersion can be regarded as the motion of one particle r
tive to a noninertial system, whose origin moves with t
other particle. However, for small times,t!t, this motion is
not very different from the motion relative to an inertial sy
tem, whose origin moves at the initial velocity of the sam
particle~Ref. @4# p. 546!. The above observation suggests t
adoption ofC0 as a scale forg, so thatg* can be considered
as a normalized Richardson constant.

Although CK andC0 are universal constants in the full
developed turbulence frame, their value is still not well d
termined due to experimental difficulties and errors. Valu
found in the literature are 1.5<CK<3 @26# and 2<C0<7
@27#.

ConsideringCK andC0 as parameters in a model, varia
tions in the range of their experimental indetermination w
affect the model properties and, particularly, the Richard
constant. This reflects the property expressed by Eq.~6!. It is
worth noting that the dependence of the model only onb
clearly highlights the fact thatg can be determined whenCK
andC0 are known. In other words, once a model is chosen
the WMC class, it can be supposed that a relationship ex
which determinesg throughCK andC0 .

To investigate the properties expressed in Eq.~4!, numeri-
cal integrations of Eq.~1! were performed. Because Eqs.~3!
and ~4! in general do not determineai uniquely ~see Ref.
@28# for a review!, ai is chosen in the following as in Ref
@15#. This choice corresponds to a Gaussian zero mean
dom velocity field with longitudinal velocity correlation
given by @29#

f 512S dx2

dx211
D 1/3

.

Equations~1! were solved numerically, and the stati
tics were computed using 104 pairs, with the initial rela-
tive velocity distributed according to ^(dv i8(t08))

2&

FIG. 1. The nondimensional separation normalized tob2t3 as a
function of t in the casesb50.1 ~h!, 0.2~n!, 0.5~,!, 1 ~j!, 2 ~m!,
5 ~.!, and 10~l!, at fixed initial separationdxi8(t08)51025.
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5Ck(«8udx8(t08)u)
2/3. The analysis was performed fo

0.1<b<10, according to the ranges ofCK andC0 found in
the literature.

In Fig. 1 the quantitŷ (dx)2&/(b2t3) is plotted as a func-
tion of t for different values ofb at fixed initial separation
dxi(t0)51025. The plateau indicates the existence and
extension of thet3 regime and provides a measure ofg* .
The value of g* increases whenb increases, as show
in Fig. 2, since an increasingb corresponds to a weake
Eulerian spatial correlation. Moreover, Fig. 1 shows th
the temporal extension of the inertial regimet3 decreases
as b increases. The temporal extension can be estim
as the intervaltd82ts8 , where ts8 is defined as the intersec
tion point between the ballistic regime,̂ (dxi8)

2&
5Ck(«8udx8(t08)u)

2/3t82, and the inertial regime,̂(dxi8)
2&

5g«8t83/3. The timetd8 is defined as the intersection poi
between the inertial regime and the diffusive regim
^(dxi8)

2&54s2TLt8, where TL is the integral Lagrangian
temporal scale. In nondimensional terms, the temporal ex
sion turns out to be

td2ts5A 6

g*
S TL

t D 1/2

2
3

g*
~ udx~ t0!u!3/2, ~7!

FIG. 2. The normalized Richardson constant vs the param
b.
o
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which clearly highlights the dependence oftd2ts on
udx(t0)u. Assuming thatTL andt are of the same order~see,
e.g., Ref. @30#! and udx(t0)u!1, it turns out thattd2ts

.A6/g* . Figure 3 confirms this result, while also showin
that g* does not depend on the initial separation, in keep
with the physical properties of thet3 regime@4#.

In this Brief Report it is shown that any given Lagrangia
stochastic model based on the well mixed condition depe
only on the parameterb, the Lagrangian-to-Eulerian scal
ratio. This parameter has been formulated here in term
universal constants characteristic of the inertial subran
i.e., CK andC0 . In spite of the fact that these constants a
expected to be universal, in the range of error associated
their experimental determination, their variation strongly
fluences the dispersion properties of the model. It can
observed that the numerical values ofg* and td2ts refer to
the specific turbulence model adopted. However, the no
mensional analysis suggests that the same behavior ca
expected from the whole class of models based on the W
assumption. Thus, the present result can be considered
of general validity within the context of the WMC approac
to Lagrangian turbulence modeling.

G.P. was supported by CNR Grant No. 126.226.BO.2.

er FIG. 3. The nondimensional separation normalized tob2t3 as a
function of t in the casesdxi(t0)51024 ~h,j!, 1025 ~n,m!, and
1026 ~,,.!, for b50.1 and 10, respectively.
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