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The functions of the Wright type in fractional calculus
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Dedicated to Professor Paolo Emilio Ricci on the occasion of his retirement

Abstract1. We provide a survey of the high transcendental functions known in the

literature as Wright functions. We devote particular attention for two functions of the

Wright type, which, in virtue of their role in applications of fractional calculus, we have

called auxiliary functions. We also discuss their relevance in probability theory showing

their connections with Lévy stable distributions. At the end, we add some historical and

bibliographical notes.

1. Introduction

Here we provide a survey of the high transcendental functions related to the
Wright special function. Like the functions of the Mittag-Leffler type, the functions
of the Wright type are known to play fundamental roles in various applications of
the fractional calculus. This is mainly due to the fact that they are interrelated
with the Mittag-Leffler functions through Laplace and Fourier transformations.
We start providing the definitions in the complex plane for the general Wright
function and for two special cases that we call auxiliary functions. Then we de-
vote particular attention to the auxiliary functions in the real field, because they
admit a probabilistic interpretation related to the fundamental solutions of certain
evolution equations of fractional order. These equations are fundamental to un-
derstand phenomena of anomalous diffusion or intermediate between diffusion and
wave propagation.
At the end we add some historical and bibliographical notes.

2. The Wright function Wλ,µ(z)

The Wright function, that we denote by Wλ,µ,(z) is so named in honour of E.
Maitland Wright, the eminent British mathematician, who introduced and investi-
gated this function in a series of notes starting from 1933 in the framework of the
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asymptotic theory of partitions, see Wright [42, 43, 44]. The function is defined by
the series representation, convergent in the whole z-complex plane,

(1) Wλ,µ(z) :=
∞∑
n=0

zn

n! Γ(λn+ µ)
, λ > −1 , µ ∈ C ,

so Wλ,µ(z) is an entire function. Originally, Wright assumed λ > 0, and, only in
1940, he considered −1 < λ < 0, see Wright [45]. We note that in the handbook of
the Bateman Project (Erdélyi et al. [6], Vol. 3, Ch. 18), presumably for a misprint,
λ is restricted to be non negative.

The integral representation. The integral representation reads

(2) Wλ,µ(z) =
1

2πi

∫
Ha

eσ+zσ−λ dσ

σµ
, λ > −1 , µ ∈ C ,

where Ha denotes the Hankel path, i.e. a loop which starts and ends at −∞ and
encircles the circular disk |ζ| ≤ |z|1/α in the positive sense: −π ≤ arg ζ ≤ π on Ha.
The equivalence of the series and integral representations is easily proved using the
Hankel formula for the Gamma function

1
Γ(ζ)

=
∫
Ha

euu−ζ du , ζ ∈ C ,

and performing a term-by-term integration. In fact,

Wλ,µ(z) =
1

2πi

∫
Ha

eσ+zσ−λ dσ

σµ
=

1
2πi

∫
Ha

eσ

[ ∞∑
n=0

zn

n!
σ−λn

]
dσ

σµ
=

=
∞∑
n=0

zn

n!

[
1

2πi

∫
Ha

eσσ−λn−µ dσ

]
=
∞∑
n=0

zn

n!Γ[λn+ µ]
.

It is possible to prove that the Wright function is entire of order 1/(1 + λ), hence
of exponential type if λ ≥ 0. The case λ = 0 is trivial since W0,µ(z) = ez/Γ(µ).

Asymptotic expansions. For the detailed asymptotic analysis in the whole com-
plex plane for the Wright functions, the interested reader is referred to Wong and
Zhao [40, 41]. These authors have provided asymptotic expansions of the Wright
functions of the first (λ ≥ 0) and second (−1 < λ < 0) kind following a new method
for smoothing Stokes’ discontinuities.
As a matter of fact, the second kind is the most interesting for us. By setting
λ = −ν ∈ (−1, 0), we recall the asymptotic expansion originally obtained by Wright
himself, that is valid in a suitable sector about the negative real axis as |z| → −∞,

(3)
W−ν,µ(z) = Y 1/2−µe−Y

[
M−1∑
m=0

AmY
−m +O(|Y |−M )

]
,

Y = Y (z) = (1− ν)(−ννz)1/(1−ν) ,

where the Am are certain real numbers.

Generalization of the Bessel functions. The Wright functions turn out to be
related to the well-known Bessel functions Jν and Iν for λ = 1 and µ = ν + 1.
In fact, by using the well-known series definitions for the Bessel functions and the
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series definitions (1) for the Wright functions, we easily recognize the identities:

(4)

Jν(z) :=
(z

2

)ν ∞∑
n=0

(−1)n(z/2)2n

n!Γ(n+ +ν + 1)
=
(z

2

)ν
W1,ν+1

(
−z

2

4

)
,

W1,ν+1(−z) :=
∞∑
n=0

(−1)nzn

n!Γ(n+ ν + 1)
= z−ν/2Jν(2z1/2) ,

and

(5)

Iν(z) :=
(z

2

)ν ∞∑
n=0

(z/2)2n

n!Γ(n+ +ν + 1)
=
(z

2

)ν
W1,ν+1

(
z2

4

)
,

W1,ν+1(z) :=
∞∑
n=0

zn

n!Γ(n+ ν + 1)
= z−ν/2Iν(2z1/2) .

As far as the standard Bessel functions Jν are concerned, the following observations
are worth noting. We first note that the Wright function W1,ν+1(−z) reduces to the
entire function Cν(z) known as Bessel-Clifford function. Then, in view of the first
equation in (4) some authors refer to the Wright function as the Wright generalized
Bessel function (misnamed also as the Bessel-Maitland function) and introduce the
notation for λ ≥ 0, see e.g. Kiryakova [18], p. 336,

(6) J (λ)
ν (z) :=

(z
2

)ν ∞∑
n=0

(−1)n(z/2)2n

n!Γ(λn+ ν + 1)
=
(z

2

)ν
Wλ,ν+1

(
−z

2

4

)
.

Similar remarks can be extended to the modified Bessel functions Iν .

Recurrence relations. Hereafter, we quote some relevant recurrence relations
from Erdély et al. [6], Vol. 3, Ch. 18:

(7) λzWλ,λ+µ(z) = Wλ,µ−1(z) + (1− µ)Wλ,µ(z) ,

(8)
d

dz
Wλ,µ(z) = Wλ,λ+µ(z) .

We note that these relations can easily be derived from (1).

3. The auxiliary functions Fν(z) and Mν(z) in C

In his earliest analysis of the time fractional diffusion-wave equation [20], Mai-
nardi introduced the two auxiliary functions of the Wright type:,

(9) Fν(z) := W−ν,0(−z) , 0 < ν < 1 ,

and

(10) Mν(z) := W−ν,1−ν(−z) , 0 < ν < 1 ,

inter-related through

(11) Fν(z) = νzMν(z) .

Thus the functions Fν(z) and Mν are particular cases of Wλ,µ(z) by setting λ = −ν
and µ = 0, µ = 1, respectively. The motivation was based on the inversion of
certain Laplace transforms in order to obtain the fundamental solutions of the
fractional diffusion-wave equation in the space-time domain, as shown in Mainardi
[20, 21, 22, 23, 24]. Here we will devote particular attention to the mathematical
properties of these functions limiting at the essential the discussion for the general
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Wright functions. The reader is referred to the Section 7 for some historical and
bibliographical details.

Series representations. The series representations for our auxiliary functions
read

(12)

Fν(z) :=
∞∑
n=1

(−z)n

n!Γ(−νn)
=

=
1
π

∞∑
n=1

(−z)n−1

n!
Γ(νn+ 1) sin(πνn) ,

and

(13)

Mν(z) :=
∞∑
n=0

(−z)n

n!Γ[−νn+ (1− ν)]
,

:=
1
π

∞∑
n=1

(−z)n−1

(n− 1)!
Γ(νn) sin(πνn) ,

where we have used the well-known reflection formula for the Gamma function,

Γ(ζ)Γ(1− ζ) =
π

sin πζ
.

As an exercise the reader can easily prove that the radius of convergence of the
power series in (12)-(13) is infinite for 0 < ν < 1, without be aware of the Wright
functions, see also Podlubny [36].
Furthermore we note that Fν(0) = 0, Mν(0) = 1/Γ(1−ν) and that the relation (11),
consistent with the recurrence relation (7), can be derived from (12)-(13) arranging
the terms of the series.

The integral representations. The integral representations for our auxiliary
functions read:

(14) Fν(z) :=
1

2πi

∫
Ha

eσ−zσ
ν

dσ ,

(15) Mν(z) :=
1

2πi

∫
Ha

eσ−zσ
ν dσ

σ1−ν .

We note that the relation (11), Fν(z) = νzMν(z), can be obtained directly from
(12)-(13) with an integration by parts. In fact,

Mν(z) =
∫
Ha

eσ−zσ
ν dσ

σ1−ν =
∫
Ha

eσ
(
− 1
νz

d

dσ
e−zσ

ν

)
dσ =

=
1
νz

∫
Ha

eσ−zσ
ν

dσ =
Fν(z)
νz

.

The passage from the series representation to the integral representation and vice-
versa for our auxiliary functions can be derived in a way similar to that adopted
for the general Wright function, that is by expanding in positive powers of z the
exponential function exp(−zσν), exchanging the order between the series and the
integral and using the Hankel representation of the reciprocal of the Gamma func-
tion. Since the radius of convergence of the power series in (12)-(13) is infinite for
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0 < ν < 1, our auxiliary functions turn out to be entire in z and therefore the
exchange between the series and the integral is legitimate.

Special cases. Explicit expressions of Fν(z) and Mν(z) in terms of known func-
tions are expected for some particular values of ν. In Mainardi and Tomirotti [31]
the authors have shown that for ν = 1/q, where q ≥ 2 is a positive integer, the
auxiliary functions can be expressed as a sum of (q − 1) simpler entire functions.
In the particular cases q = 2 and q = 3 we find from (13)

(16) M1/2(z) =
1√
π

∞∑
m=0

(−1)m
(

1
2

)
m

z2m

(2m)!
=

1√
π

exp
(
−z

2

4

)
,

and

(17)
M1/3(z) =

1
Γ(2/3)

∞∑
m=0

(
1
3

)
m

z3m

(3m)!
− 1

Γ(1/3)

∞∑
m=0

(
2
3

)
m

z3m+1

(3m+ 1)!
=

= 32/3Ai
( z

31/3

)
,

where Ai denotes the Airy function.
Furthermore, it can be proved that M1/q(z) satisfies the differential equation of
order q − 1

(18)
dq−1

dzq−1
M1/q(z) +

(−1)q

q
zM1/q(z) = 0 ,

subjected to the q − 1 initial conditions at z = 0, derived from (15),

(19) M
(h)
1/q(0) =

(−1)h

π
Γ
(
h+ 1
q

)
sin

(h+ 1)π
q

,

with h = 0, 1, · · · , q − 2. We note that, for q ≥ 4, equation (18) is akin to the
hyper-Airy differential equation of order q − 1, see e.g. Bender and Orszag [2].
Consequently, in view of the above considerations, the auxiliary function Mν(z) can
be referred to as the generalized hyper-Airy function. However, in view of further
applications in stochastic processes, we prefer to consider it as a natural (fractional)
generalization of the Gaussian function, see Mura, Taqqu and Manardi [35], Mura
and Pagnini [34], Mura and Mainardi [33], similarly as the Mittag-Leffler function is
known to be the natural (fractional) generalization of the exponential function for
relaxation processes, see Gorenflo and Mainardi [12], Mainardi and Gorenflo [26].
To stress the relevance of the auxiliary function Mν(z), it was also suggested the
special name M-Wright function, a terminology that has been followed in literature
to some extent, see Notes in Section 7.

4. The auxiliary functions Fν(x) and Mν(x) in R

We point out that the most relevant applications of Wright functions, specially
our auxiliary functions, are when the variable is real. More precisely, in this Section,
we will consider functions that are defined either on the positive real semi-axis R+

or on all of R. When the support is R, we agree to consider even functions, that is,
functions defined in a symmetric way. In this case, to stress the symmetry property
of the function, the independent variable may be denoted by |x|.
We point out that in the limit ν → 1− the function Mν(x), for x ∈ R+, tends to
the Dirac generalized function δ(x− 1).
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The asymptotic representation of Mν(x). Let us first point out the asymptotic
behaviour of the function Mν(x) as x → +∞. Choosing as a variable x/ν rather
than x, the computation of the asymptotic representation by the saddle-point ap-
proximation yields, see [31],

(20) Mν

(x
ν

)
∼ a(ν)x(ν−1/2)/(1−ν) exp

[
−b(ν)x1/(1−ν)

]
,

where

(21) a(ν) =
1√

2π(1− ν)
> 0 , b(ν) =

1− ν
ν

> 0 .

The above evaluation is consistent with the first term in Wright’s asymptotic ex-
pansion (3) after having used the definition (10).

Plots of Mν(|x|). We show the plots of the M -Wright function on the real axis for
some rational values of the parameter ν. To gain more insight of the effect of the
parameter itself on the behaviour close to and far from the origin, we adopt both
linear and logarithmic scale for the ordinates.

Figure 1. Plots of the function Mν(|x|) with ν =
0, 1/8, 1/4, 3/8, 1/2 for −5 ≤ x ≤ 5; left: linear scale, right:
logarithmic scale.

Figure 2. Plots of the function Mν(|x|) with ν =
1/2 , 5/8 , 3/4 , 1 for −5 ≤ x ≤ 5: left: linear scale;
right: logarithmic scale.

In figures 1 and 2 we compare the plots of the Mν(x) Wright auxiliary functions
in −5 ≤ x ≤ 5 for some rational values in the ranges ν ∈ [0, 1/2] and ν ∈ [1/2, 1],
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respectively. Thus in figure 1 we see the transition from exp(−|x|) for ν = 0
to 1/

√
π exp(−x2) for ν = 1/2, whereas in figure 2 we see the transition from

1/
√
π exp(−x2) to the delta function δ(1− |x|) for ν = 1.

In plotting Mν(x) at fixed ν for sufficiently large x the asymptotic representation
(20)-(21) is very useful because, as x increases, the numerical convergence of the
series in (13) becomes poor and poor up to being completely inefficient. Henceforth,
the matching between the series and the asymptotic representation is relevant.

5. The Laplace transform pairs

Let us write the Laplace transform of the Wright function as

Wλ,µ(±r)÷ L [Wλ,µ(±r); s] :=
∫ ∞

0

e−srWλ,µ(±r) dr ,

where r denotes a non negative real variable, i.e. 0 ≤ r < +∞, and s is the Laplace
complex parameter.
When λ > 0 the series representation of the Wright function can be transformed
term-by-term. In fact, for a known theorem of the theory of the Laplace transforms,
see e.g. Doetsch [5], the Laplace transform of an entire function of exponential type
can be obtained by transforming term-by-term the Taylor expansion of the original
function around the origin. In this case the resulting Laplace transform turns out
to be analytic and vanishing at infinity. As a consequence, we obtain the Laplace
transform pair for the Wright function of the first kind as

(22) Wλ,µ(±r)÷ 1
s
Eλ,µ

(
±1
s

)
, λ > 0 , |s| > 0 ,

where Eλ,µ denotes the Mittag-Leffler function in two parameters. The proof is
straightforward noting that

∞∑
n=0

(±r)n

n!Γ(λn+ µ)
÷ 1
s

∞∑
n=0

(±1/s)n

Γ(λn+ µ)
,

and recalling the series representation of the Mittag-Leffler function,

Eα,β(z) :=
∞∑
n=0

zn

Γ(αn+ β)
, α > 0 , β ∈ C .

For λ→ 0+ equation (22) provides the Laplace transform pair

(23) W0+,µ(±r) =
e±r

Γ(µ)
÷ 1

Γ(µ)
1

s∓ 1
=

1
s
E0,µ

(
±1
s

)
, |s| > 1 ,

where, to remain in agreement with (22), we have formally put

E0,µ(z) :=
∞∑
n=0

zn

Γ(µ)
:=

1
Γ(µ)

E0(z) :=
1

Γ(µ)
1

1− z
, |z| < 1 .

We recognize that in this special case the Laplace transform exhibits a simple pole
at s = ±1 while for λ > 0 it exhibits an essential singularity at s = 0.
For −1 < λ < 0 the Wright function turns out to be an entire function of order
greater than 1, so that the term-by-term transformation representation is no longer
legitimate. Thus, for Wright functions of the second kind, care is required in estab-
lishing the existence of the Laplace transform, which necessarily must tend to zero
as s→∞ in its half-plane of convergence.
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For the sake of convenience we limit ourselves to derive the Laplace transform for
the special case of Mν(r); the exponential decay as r →∞ of the original function
provided by (20) ensures the existence of the image function. From the integral
representation (13) of the Mν function we obtain

Mν(r)÷ 1
2πi

∫ ∞
0

e−sr
[∫

Ha

eσ−rσ
ν dσ

σ1−ν

]
dr =

=
1

2πi

∫
Ha

eσσν−1

[∫ ∞
0

e−r(s+σ
ν) dr

]
dσ =

1
2πi

∫
Ha

eσσν−1

σν + s
dσ .

Then, by recalling the integral representation of the Mittag-Leffler function,

Eα(z) =
1

2πi

∫
Ha

ζα−1eζ

ζα − z
dζ , α > 0 , z ∈ C ,

we obtain the Laplace transform pair

(24) Mν(r) := W−ν,1−ν(−r)÷ Eν(−s) , 0 < ν < 1 .

Although transforming the Taylor series of Mν(r) term-by-term is not legitimate,
this procedure yields a series of negative powers of s that represents the asymptotic
expansion of the correct Laplace transform, Eν(−s), as s→∞ in a sector around
the positive real axis. Indeed we get

∞∑
n=0

∫∞
0
e−sr(−r)n dr

n!Γ(−νn+ (1− ν))
=
∞∑
n=0

(−1)n

Γ(−νn+ 1− ν)
1

sn+1
=

=
∞∑
m=1

(−1)m−1

Γ(−νm+ 1)
1
sm
∼ Eν(−s) , s→∞ .

We note that (24) contains the well-known Laplace transform pair, see e.g. Doetsch
[5],

M1/2(r) :=
1√
π

exp
(
−r

2

4

)
÷ E1/2(−s) := exp s2erfc(s) ,

valid ∀s ∈ C.
Analogously, using the more general integral representation (2) of the Wright func-
tion, we can get the Laplace transform pair for the Wright function of the second
kind. For the case λ = −ν ∈ (−1, 0), with µ > 0 for simplicity, we obtain,

(25) W−ν,µ(−r)÷ Eν,µ+ν(−s) , 0 < ν < 1 .

We note the minus sign in the argument in order to ensure the the existence of the
Laplace transform thanks to the Wright asymptotic formula (3) valid in a sector
about the negative real axis.
In the limit as ν → 0+ (thus λ → 0−) we formally obtain the Laplace transform
pair

(26) W0−,µ(−r) :=
e−r

Γ(µ)
÷ 1

Γ(µ)
1

s+ 1
:= E0,µ(−s) .
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Therefore, as λ → 0±, and µ = 1 we note a sort of continuity in the results (23)
and (26) since

(27) W0,1(−r) := e−r ÷ 1
s+ 1

=


1
s
E0(−1/s) , |s| > 1 ;

E0(−s) , |s| < 1 .

We here point out the relevant Laplace transform pairs related to the auxiliary
functions of argument r−ν , see Mainardi [20, 21, 22],

(28)
1
r
Fν

(
1
rν

)
=

ν

rν+1
Mν

(
1
rν

)
÷ e−s

ν

, 0 < ν < 1 ,

(29)
1
ν
Fν

(
1
rν

)
=

1
rν

Mν

(
1
rν

)
÷ e−s

ν

s1−ν
, 0 < ν < 1 .

We recall that the Laplace transform pairs in (28) were formerly considered by
Pollard [37], who provided a rigorous proof based on a formal result by Humbert
[15]. Later Mikusiński [32] got a similar result based on his theory of operational
calculus, and finally, albeit unaware of the previous results, Buchen and Mainardi [3]
derived the result in a formal way. We note, however, that all these authors were not
informed about the Wright functions. To our actual knowledge, the former author
who derived the Laplace transforms pairs (28)-(29) in terms of Wright functions of
the second kind was Stankovic̀ [39].
Hereafter we will provide two independent proofs of (28) by carrying out the inver-
sion of exp(−sν), either by the complex Bromwich integral formula, see Mainardi
[20, 21, 22] or by the formal series method, see Buchen and Mainardi [3]. Similarly,
we can act for the Laplace transform pair (29).
For the complex integral approach we deform the Bromwich pathBr into the Hankel
path Ha, that is equivalent to the original path, and we set σ = sr. Recalling (13)-
(14), we get

L−1 [exp (−sν)] =
1

2πi

∫
Br

esr−s
ν

ds =
1

2πir

∫
Ha

eσ−(σ/r)ν

dσ =

=
1
r
Fν

(
1
rν

)
=

ν

rν+1
Mν

(
1
rν

)
.

For the series approach, let us expand the Laplace transform in series of negative
powers and invert term by term. Then, after recalling (12)-(13), we obtain:

L−1[exp(−sν)] =
∞∑
n=0

(−1)n

n!
L−1[sνn] =

∞∑
ν=1

(−1)n

n!
r−νn−1

Γ(−νn)
=

=
1
r
Fν

(
1
rν

)
=

ν

rν+1
Mν

(
1
rν

)
.

We note the relevance of Laplace transforms (24) and (28) in pointing out the
non-negativity of the Wright function Mν(x) and the complete monotonicity of the
Mittag-leffler functions Eν(−x) for x > 0 and 0 < ν < 1. In fact, since exp (−sν)
denotes the Laplace transform of a probability density (precisely , the extremal
Lévy stable density of index ν, see Feller [7]), the L.H.S. of (28) must be non-
negative, and so also the L.H.S of (24). As a matter of fact the Laplace transform
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pair (24) shows, replacing s by x, that the spectral representation of the Mittag-
Leffler function Eν(−x) is expressed in terms of the M -Wright function Mν(r), that
is:

(30) Eν(−x) =
∫ ∞

0

e−rxMν(r) dr , 0 < ν < 1 , x ≥ 0 .

We now recognize that equation (30) is consistent with a result derived by Pollard
[37].
It is instructive to compare the spectral representation of Eν(−x) with that of the
function Eν(−tν). We recall

(31) Eν(−tν) =
∫ ∞

0

e−rtKν(r) dr , 0 < ν < 1 , t ≥ 0 ,

with spectral function

(32) Kν(r) =
1
π

rν−1 sin(νπ)
r2ν + 2rν cos (νπ) + 1

=
1
πr

sin(νπ)
rν + r−ν + 2 cos (νπ)

.

The relationship between Mν(r) and Kν(r) is worth to be explored. Both functions
are non-negative, integrable and normalized in R+, so they can be adopted in
probability theory as density functions. The normalization conditions derive from
equations (30) and (31) since

∫ +∞

0

Mν(r) dr =
∫ +∞

0

Kν(r) dr = Eν(0) = 1 .

6. The Mν-Wright functions in probability

The Mν-Wright functions play fundamental roles in Theory of Probability and
Stochastic Processes with support both in R+ (the variable is mostly a time coor-
dinate) and in all of R (the function, divided by 2, is continued in a symmetric way
so the variable is the absolute value of a space coordinate ).
Indeed, for certain stochastic processes of renewal type, functions of Mittag-Leffler
and Wright type can be adopted as probability distributions of waiting times, as
shown in Mainardi, Gorenflo and Vivoli [27], where such distributions are compared.
We refer the interested reader to that paper for details.
As in Section 4, here we agree to denote by x and |x| the variable of Mν functions
in R+ and R, respectively.

The absolute moments of order δ. The absolute moments of order δ > −1 in
R+ of the Wright M -function pdf in R+ are finite and turn out to be

(33)
∫ ∞

0

xδMν(x) dx =
Γ(δ + 1)

Γ(νδ + 1)
, δ > −1 , 0 ≤ ν < 1 .
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In order to derive this fundamental result we proceed as follows, based on the
integral representation (15),∫ ∞

0

xδMν(x) dx =
∫ ∞

0

cδ
[

1
2πi

∫
Ha

eσ−xσ
ν dσ

σ1−ν

]
dx =

=
1

2πi

∫
Ha

eσ
[∫ ∞

0

e−xσ
ν

xδ dx

]
dσ

σ1−ν =

=
Γ(δ + 1)

2πi

∫
Ha

eσ

σνδ+1
dσ =

Γ(δ + 1)
Γ(νδ + 1)

.

Above we have legitimate the exchange between the two integrals and we have used
the identity ∫ ∞

0

e−xσ
ν

xδ dx =
Γ(δ + 1)
(σν)δ+1

.

In particular, for δ = n ∈ N, the formula (33) provides the moments of integer
order that can also be computed from the Laplace transform pair (24) as follows:∫ +∞

0

xnMν(x) dx = lim
s→0

(−1)n
dn

dsn
Eν(−s) =

Γ(n+ 1)
Γ(νn+ 1)

.

Incidentally, we note that the Laplace transform pair (24) could be obtained using
the fundamental result (33) by developing in power series the exponential kernel of
the Laplace transform and then transforming the series term-by-term.

The characteristic function. As well-known in probability theory the Fourier
transform of a density provides the so-called characteristic function. In our case we
have:

(34)

F
[

1
2
Mν(|x|)

]
:=

1
2

∫ +∞

−∞
Mν(|x|) dx =

=
∫ ∞

0

cos(κx)Mν(x) dx = E2ν(−κ2) .

For this prove it is sufficient to develop in series the cosine function and use formula
(33), ∫ ∞

0

cos(κx)Mν(x) dx =
∞∑
n=0

(−1)n
κ2n

(2n)!

∫ ∞
0

x2nMν(x) dx =

=
∞∑
n=0

(−1)n
κ2n

Γ(2νn+ 1)
= E2ν(−κ2) .

Relations with Lévy stable distributions. We find it worth to discuss the rela-
tions between the Mν-Wright functions and the so called Lévy stable distributions.
The term stable has been assigned by the French mathematician Paul Lévy, who in
the 1920’s years started a systematic research in order to generalize the celebrated
Central Limit Theorem to probability distributions with infinite variance. For stable
distributions we can assume the following

Definition 1. If two independent real random variables with the same shape or
type of distribution are combined linearly and the distribution of the resulting
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random variable has the same shape, the common distribution (or its type, more
precisely) is said to be stable.

The restrictive condition of stability enabled Lévy (and then other authors) to
derive the canonic form for the Fourier transform of the densities of these distribu-
tions. Such transform in probability theory is known as characteristic function.
Here we follow the parameterization in Feller [7] revisited in Gorenflo and Mainardi
[13] and in Mainardi, Luchko and Pagnini [28].
Denoting by Lθα(x) a generic stable density in R, where α is the index of stability and
θ the asymmetry parameter, improperly called skewness, its characteristic function
reads:

(35) Lθα(x)÷ L̂θα(κ) = exp
[
−ψθα(κ)

]
, ψθα(κ) = |κ|αei(signκ)θπ/2 ,

0 < α ≤ 2 , |θ| ≤ min {α, 2− α} .
We note that the allowed region for the parameters α and θ turns out to be a
diamond in the plane {α, θ} with vertices in the points (0, 0), (1, 1), (1,−1), (2, 0),
that we call the Feller-Takayasu diamond, see figure 3. For values of θ on the border
of the diamond (that is θ = ±α if 0 < α < 1, and θ = ±(2 − α) if 1 < α < 2) we
obtain the so-called extremal stable densities.
We note the symmetry relation Lθα(−x) = L−θα (x), so that a stable density with
θ = 0 is symmetric.

[ ]

Figure 3. The Feller-Takayasu diamond for Lévy stable densities.

Stable distributions have noteworthy properties of which the interested reader can
be informed from the existing literature. Here-after we recall some peculiar prop-
erties:

- The class of stable distributions possesses its own domain of attraction, see
e.g. Feller [7].

- Any stable density is unimodal and indeed bell-shaped, i.e. its n-th derivative
has exactly n zeros in R, see Gawronski [8].

- The stable distributions are self-similar and infinitely divisible. These prop-
erties derive from the canonic form (35) through the scaling property of the
Fourier transform.
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Self-similarity means

(36) Lθα(x, t)÷ exp
[
−tψθα(κ)

]
⇐⇒ Lθα(x, t) = t−αLθα(x/tα) ,

where t is a positive parameter. If t is time, then Lθα(x, t) is a spatial density evolv-
ing on time with self-similarity. Infinite divisibility means that for every positive
integer n, the characteristic function can be expressed as the nth power of some
characteristic function, so that any stable distribution can be expressed as the n-
fold convolution of a stable distribution of the same type. Indeed, taking in (35)
θ = 0, without loss of generality, we have

(37) e−t|κ|
α

=
[
e−(t/n)|κ|α

]n
⇐⇒ L0

α(x, t) =
[
L0
α(x, t/n)

]∗n
,

where [
L0
α(x, t/n)

]∗n
:= L0

α(x, t/n) ∗ L0
α(x, t/n) ∗ · · · ∗ L0

α(x, t)

is the multiple Fourier convolution in R with n identical terms.
Only for a few particular cases, the inversion of the Fourier transform in (35) can
be carried out using standard tables, and well-known probability distributions are
obtained.
For α = 2 (so θ = 0), we recover the Gaussian pdf, that turns out to be the only
stable density with finite variance, and more generally with finite moments of any
order δ ≥ 0. In fact

(38) L0
2(x) =

1
2
√
π
e−x

2/4 .

All the other stable densities have finite absolute moments of order δ ∈ [−1, α) as
we will show later.
For α = 1 and |θ| < 1, we get

(39) Lθ1(x) =
1
π

cos(θπ/2)
[x+ sin(θπ/2)]2 + [cos(θπ/2)]2

,

which for θ = 0 includes the Cauchy-Lorentz pdf,

(40) L0
1(x) =

1
π

1
1 + x2

.

In the limiting cases θ = ±1 for α = 1 we obtain the singular Dirac pdf’s

(41) L±1
1 (x) = δ(x± 1) .

In general, we must recall the power series expansions provided in Feller [7]. We
restrict our attention to x > 0 since the evaluations for x < 0 can be obtained using
the symmetry relation. The convergent expansions of Lθα(x) (x > 0) turn out to be

for 0 < α < 1, |θ| ≤ α:

(42) Lθα(x) =
1
πx

∞∑
n=1

(−x−α)n
Γ(1 + nα)

n!
sin
[nπ

2
(θ − α)

]
;

for 1 < α ≤ 2, |θ| ≤ 2− α:

(43) Lθα(x) =
1
πx

∞∑
n=1

(−x)n
Γ(1 + n/α)

n!
sin
[nπ

2α
(θ − α)

]
.
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From the series in (42) and the symmetry relation we note that the extremal
stable densities for 0 < α < 1 are unilateral, precisely vanishing for x > 0 if θ = α,
vanishing for x < 0 if θ = −α. In particular the unilateral extremal densities
L−αα (x) with 0 < α < 1 have support in R+ and Laplace transform exp(−sα). For
α = 1/2 we obtain the so-called Lévy-Smirnov pdf :

(44) L
−1/2
1/2 (x) =

x−3/2

2
√
π
e−1/(4x) , x ≥ 0 .

As a consequence of the convergence of the series in (42)-(43) and of the symmetry
relation we recognize that the stable pdf ’s with 1 < α ≤ 2 are entire functions,
whereas with 0 < α < 1 have the form

(45) Lθα(x) =


1
x

Φ1(x−α) for x > 0 ,

1
|x|

Φ2(|x|−α) for x < 0 ,

where Φ1(z) and Φ2(z) are distinct entire functions. The case α = 1 (|θ| < 1) must
be considered in the limit for α→ 1 of (42)-(43), because the corresponding series
reduce to power series akin with geometric series in 1/x and x, respectively, with
a finite radius of convergence. The corresponding stable pdf ’s are no longer repre-
sented by entire functions, as can be noted directly from their explicit expressions
(39)-(40).
We omit to provide the asymptotic representations of the stable densities referring
the interested reader to Feller [7], Mainardi, Luchko and Pagnini [28]. However,
based on asymptotic representations, we can state as follows; for 0 < α < 2 the
stable pdf ’s exhibit fat tails in such a way that their absolute moment of order δ is
finite only if −1 < δ < α. More precisely, one can show that for non-Gaussian, not
extremal, stable densities the asymptotic decay of the tails is

(46) Lθα(x) = O
(
|x|−(α+1)

)
, x→ ±∞ .

For the extremal densities with α 6= 1 this is valid only for one tail (as |x| → ∞), the
other (as |x| → ∞) being of exponential order. For 1 < α < 2 the extremal pdf ’s
are two-sided and exhibit an exponential left tail (as x→ −∞) if θ = +(2− α), or
an exponential right tail (as x→ +∞) if θ = −(2−α). Consequently, the Gaussian
pdf is the unique stable density with finite variance. Furthermore, when 0 < α ≤ 1,
the first absolute moment is infinite so we should use the median instead of the
non-existent expected value in order to characterize the corresponding pdf .
Let us also recall a relevant identity between stable densities with index α and 1/α
(a sort of reciprocity relation) pointed out in Feller [7], that is, assuming x > 0,

(47)
1

xα+1
Lθ1/α(x−α) = Lθ

∗

α (x) ,
1
2
≤ α ≤ 1 , θ∗ = α(θ + 1)− 1 .

The condition 1/2 ≤ α ≤ 1 implies 1 ≤ 1/α ≤ 2. A check shows that θ∗ falls within
the prescribed range |θ∗| ≤ α if |θ| ≤ 2 − 1/α. We leave as an exercise for the
interested reader the verification of this reciprocity relation in the limiting cases
α = 1/2 and α = 1.
From a comparison between the series expansions in (42)-(43) and in (14)-(15), we
recognize that for x > 0 our auxiliary functions of the Wright type are related to
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the extremal stable densities as follows, see [31],

(48) L−αα (x) =
1
x
Fα(x−α) =

α

xα+1
Mα(x−α) , 0 < α < 1 ,

(49) Lα−2
α (x) =

1
x
F1/α(x) =

1
α
M1/α(x) , 1 < α ≤ 2 .

In equations (48)-(49), for α = 1, the skewness parameter turns out to be θ = −1,
so we get the singular limit

(50) L−1
1 (x) = M1(x) = δ(x− 1) .

More generally, all (regular) stable densities, given in equations (42)-(43), were
recognized to belong to the class of FoxH-functions, as formerly shown by Schneider
[38]. This general class of high transcendental functions is out of the scope of this
survey.

The Wright M-function in two variables. In view of time-fractional diffusion
processes related to time-fractional diffusion equations it is worthwhile to introduce
the function in two variables

(51) Mν(x, t) := t−νMν(xt−ν) , 0 < ν < 1 , x, t ∈ R+ ,

which defines a spatial probability density in x evolving in time t with self-similarity
exponent H = ν. Of course for x ∈ R we have to consider the symmetric version
obtained from (51) multiplying by 1/2 and replacing x by |x|.
Hereafter we provide a list of the main properties of this function, which can be
derived from the Laplace and Fourier transforms for the corresponding Wright M -
function in one variable.
From equation (29) we derive the Laplace transform of Mν(x, t) with respect to
t ∈ R+,

(52) L{Mν(x, t); t→ s} = sν−1e−xs
ν

.

From equation (24) we derive the Laplace transform of Mν(x, t) with respect to
x ∈ R+,

(53) L{Mν(x, t);x→ s} = Eν (−stν) .

From equation (34) we derive the Fourier transform of Mν(|x|, t) with respect to
x ∈ R,

(54) F {Mν(|x|, t) ; x→ κ} = 2E2ν

(
−κ2tν

)
.

Using the Mellin transforms, Mainardi, Pagnini and Gorenflo [30] the following
integral formula,

(55) Mν(x, t) =
∫ ∞

0

Mλ(x, τ)Mµ(τ, t) dτ , ν = λµ .

Special cases of the Wright M-function are simply derived for ν = 1/2 and ν = 1/3
from the corresponding ones in the complex domain, see equations (16)-(17). We
devote particular attention to the case ν = 1/2 for which we get from (16) the
Gaussian density in R,

(56) M1/2(|x|, t) =
1

2
√
πt1/2

e−x
2/(4t) .
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For the limiting case ν = 1 we obtain

(57) M1(|x|, t) =
1
2

[δ(x− t) + δ(x+ t)] .

7. Notes

In early nineties, in his former analysis of fractional equations interpolating dif-
fusion and wave-propagation, Mainardi [20] introduced the functions of the Wright
type

Fν(z) := W−ν,0(−z) , Mν(z) := W−ν,1−ν(−z ,
with 0 < ν < 1, inter-related through Fν(z) = νzMν(z) to characterize the solutions
for typical boundary value problems.
Being in that time only aware of the Bateman project where the parameter λ
of the Wright function Wλ,µ(z) was erroneously restricted to non-negative values,
Mainardi thought to have extended the original Wright function, in an original way,
calling Fν and Mν auxiliary functions. Presumably for this reason the function Mν

is referred as the Mainardi function in the book Podlubny [36] and in some papers
including Balescu [1], Chechkin et al. [4], Germano et al. [9], Gorenflo, Luchko and
Mainardi [10, 11], Hanyga [14].
It was Professor Stanković, during the presentation of the paper Mainardi and
Tomirotti [31] at the Conference Transform Methods and Special Functions, Sofia
1994, who informed Mainardi that this extension for −1 < µ < 0 was already made
just by Wright himself in 1940 (following his previous papers in 1930’s). In a paper
devoted to the 80-th birthday of Prof. Stanković, see Mainardi, Gorenflo and Vivoli
[27], Mainardi took the occasion to renew his personal gratitude to Prof. Stanković
for this earlier information that has induced him to study the original papers by
Wright and work (also in collaboration) on the functions of the Wright type for
further applications, see e.g. Gorenflo, Luchko and Mainardi [10, 11] and Mainardi
and Pagnini [29].
For more mathematical details on the functions of the Wright type, the reader may
be referred to the article by Kilbas, Saigo and Trujillo [16] and to the book Kilbas,
Srivastava and Trujillo [17] and references therein. For the numerical point of view
we like to point out the recent paper by Luchko [19], where algorithms are provided
for computation of the Wright function on the real axis with prescribed accuracy.
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