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Abstract

The fundamental solutions (Green functions) for the Cauchy problem of the space-time
fractional diffusion equation are investigated with respect to their scaling and similarity prop-
erties, starting from their composite Fourier-Laplace representation. By using the Mellin
transform, a general representation of the Green functions in terms of Mellin-Barnes integrals
in the complex plane is presented, that allows us to obtain their computational form in the
space-time domain and to analyse their probability interpretation.

Mathematics Subject Classification 2000: 26A33, 33E12, 33C60, 44A10, 45K05, 47G30, 60G18,
60G55, 60J70.

Key words: Green functions, Fox H-functions, Mellin-Barnes integrals, fractional calculus, self-
similarity.

1 Introduction

We consider the Cauchy problem for the space-time fractional partial differential equation, which is
obtained from the standard diffusion equation by replacing the second-order space derivative with
a Riesz-Feller derivative of order o € (0, 2] and skewness # (|9] < min {&, 2—a}), and the first-order
time derivative with a Caputo derivative of order 4 € (0,2]. The fundamental solutions (Green
functions) for the Cauchy problem are investigated with respect to their scaling and similarity
properties, starting from their combined Fourier-Laplace representation.

In the cases {0 < o < 2,8 =1} and {o@ = 2,0 < 8 < 1} the fundamental solutions are
known to be interpreted as a spatial probability density functions evolving in time, so we talk of
space-fractional diffusion and time-fractional diffusion, respectively. Then, by using the Mellin
transform, we provide a general representation of the Green functions in terms of Mellin-Barnes
integrals in the complex plane, which allows us to extend the probability interpretation to the ranges
{0<a<2,0<B8<1}and {1l < B < a <2} Furthermore, from this representation it is possible
to derive explicit formulae (convergent series and asymptotic expansions}, which enable us to plot
the spatial probability densities for different values of the relevant parameters o, 8, 3.
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2 The space-time fractional diffusion equation

By replacing in the standard diffusion equation

2
%u(m,t):%u(z,t), —oo < <400, t>0, (2.1)
where u = u(z,t) is the (real) field variable, the second-order space derivative and the first-order
time derivative by suitable integro-differential operators, which can be interpreted as a space and
time derivative of fractional order, we obtain a sort of “generalized diffusion” equation. Such
equation may be referred to as the space-time fractional diffusion equation when its fundamental
solution (see below) can be interpreted as a probability density. We write

DPu(z,t) = Du(z,t), —oo<z<400, t>0, (2.2)
where the o/, 8, 3 are real parameters restricted as follows
0<a<2, |8 <min{e,2—-a}, 0<B<2. (2.3)

In (2.2) »D§ is the RieszFeller fractional derivative (in space) of order & and skewness f, and
D is the Caputo fractional derivative (in time) of order . The definitions of these fractional
derivatives are more eagily understood if given in terms of Fourier transform and Laplace transform,
respectively.

For the Riesz-Feller fractional derivative we have

F{aDg f(z);K} = ~98(k) Flr), oK) = |s|" el(si8RR)OT/2 (2.4)

where 5 € R and f(x) = F{f(z);x} = ff;o e KT #(z)dz . In other words the symbol of the
pseudo-differential operator! ,Dg is required to be the logarithm of the characteristic function of
the generic stable (in the Lévy sense) probability density, according to the Feller parameterization

61, 171.

For @ = 2 (hence # = 0) we have ;53‘(/4) = —% = (—ik)?, so we recover the standard second
derivative. o
For 0 < a <2 and § = 0 we have ,D§(k) = —|s|* = —(k2)*/2 g0
. 42 af2
«Dg = — <~EF) : (2.5)

In this case we call the LHS of (2.5) simply the Riesz fractional derivative of order o. For the
explicit expressions in integral form of the general Riesz-Feller fractional derivative we refer the
interested reader e.g. to [13], [15], [25], [34].

Let us now consider the Caputo fractional derivative. Following the original idea by Caputo [2],
see also [3], {12], {32], a proper time fractionel derivative of order § € (m-1, m) with m € IN, useful
for physical applications, may be defined in terms of the following rule for the Laplace transform:

m—1
L{:Df f(t)s} =" fls) = 3 1R B0, m—-1<g<m, (2.6)
k=0

where s € € and f(s) = L{f(t);s} = J2 €8t f(t) dt. Then the Caputo fractional derivative of
F(#) turns out to be

1 tofm iy dr
i,

m—-1<B8<m,

—_ — Yo Hl-m?
DL ) = T =B)Jo 6=7) £20. @7
dm
az;;f(f), B=m,

1Let us recall that a generic linear pseudo-differential operator A, acting with respect to the variable 2 ¢ R, is
defined through its Fourier representation, namely fj’;’: e™® Alf(z)] de = A(x) f(x) , where A(x) is referred to as
symbol of A, given as A(r) = (Ae iz gtinz,
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In order to formulate and solve the Cauchy problems for (2.2) we I}ave to select ex?licit initiaé
conditions concerning u(z,0%) if 0 < § < 1 and u(z,0%), w{z,0F) if 1. <_ﬂ < 2 If ¢y (zl) En
$a(z) denote two given real functionsofz € R, the Cauchy problems consist in finding the solution
of (2.2) subjected to the additional conditions:

u(z,0)=¢i1(z), ze€R, if 0<FL (2.8a)
w0 =D, R 1<g<2. (2.8)
uy(z,07) = ¢a(z),

3 Representations of the Green functions

The Cauchy problems can be conveniently treated by making use of the m0.5t common lintegra.l
transforms, i.e. the Fourier transform (in space) and the Laplace transform (in time). T 1ebcor];1-
posite Fourier-Laplace transforms of the solutions of the two Cauchy problems turn out to be, by
using (2.4) and (2.6) with m = 1,2,

881

™ , (3.1a)
R e, 0<ps]

(s, 8) =

Balk), 1<B<2. (3.1b)

~ gh—1 — gf—2
a9 = gt M T e

By fundamental solutions (or Green functions) of the above Cauchy problems we mean the (gen-
eralized) solutions corresponding to the initial conditions:

& (2,0t =d(z), 0<B<LY; (3.22)
0(2) Y =
Go%(z,0%) = b(a), G (@0 =0,
7 ; 1<pf<2. (3.2b)
0 _eq 0@ gt =
P Ga,(ﬂ) (-’ra0+) =0, bt Ga,ﬁ (2,0 ) §(z),

We have denoted by 8(z) the delta-Dirac generalized function, whose (generalized) Fourier tra.ns:f
form is known to be 1, and we have distinguished by the apices (1) and (2) the two types o

Green functions. From Egs (3.1a)-(3.1b) the composite Fourier-Laplace transforms of these Green
functions turn out to be

—— .
= Sﬁ_J

0 () P —
Gop (49 = 539000

Furthermore, by recalling the Fourier convolution property, we note that the Green fuIlCtiOl.IS allov&;
us to represent the solutions of the above two Cauchy problems through the relevant integral

formulas:

0<pf<2, j=12. (3.3)

uz,) = | TEO e pe-gd, 0<FST; (3.49)

u(e,t) = / e Dh @ - &) + D6 Dala - O] de 1< B <2 (3.4b)

o0

We recognize from (3.3) that the function Gif” (z,t) along with its Fourier-Laplace t.ransform is
well defined also for 0 < 8 < 1 even if it loses its meaning of being a fundamental solution of (3.2),

resulting

11
Gi(g)(z,t) = / Gi%)(m,r) dr, 0<B<2. (3.5)
’ 0
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By using the known scaling rules for the Fourier and Laplace transforms, and introducing the
stmilarity variable x/t°/*, we infer from (3.3) (thus without inverting the two transforms) the
scaling properties of the Green functions,

G2 (2,8) = ¢=Blari=1 2D (z/t"/a) , i=1,2, (3.6)

where the one-variable functions K’ z(ﬁ])(a:) , obtained by setting ¢ = 1, are called the reduced Green

functions. We also note the symmetry relation:
8 (4 -6 (4 .

D (z,t) =678 (), j=1,2, (3.7)
so for the determination of the Green functions we can restrict our attention to 2 > 0. Extending
the method illustrated in [9], [25], where only the Green function of type (1) was determined, we
first invert the Laplace transforms in (3.3) getting

— T . Yy )

G (5,1) = 97 By [l (=)t°), Ko () = Bpsl—wiw) j =1,2, (38)
where Eg ; denotes the two-parameter Mittag-Leffler function®. We note the normalization prop-
erty satisfied by both reduced Green functions: fj:; Kz’(g)(m) dz = Ep4(0) = 1/T(j) = 1 for
J = 1,2. However, the normalization property holds true for all times only for the first complete
Green function as we can note from the first equality in (3.8). Following [25] we invert the Fourier

transforms of K, zg)(m) by using the convolution theorem of the Mellin transforms arriving at the
Mellin-Barnes integral representation
Ry y4-ioo T(EYT(1 - &)Yr(1 —
’Pw) = Lo [T TG DTy, (59)
y=ico T'(J— £8)T(ps)T(1 - ps)
where 0 < v < min{a,1}, and p = (& — 0)/(2a).

" az 2w

For later use we recall the main formulas concerning the Mellin transform. For more details,
see e.g. [27). If

+oo
MUy} =10 = [ f0r i <R ) < (3.10)
denotes the Mellin transform of f(r) with r € R*, the inversion is provided by
1 Y+ioo
My = £0) = 5 [ P, (3.17)
278 Jy—ico

where 7 >0, 7y =R(s), 71 < <. The Mellin convolution formula reads
71 Mo .
h(r) = ;f(p)g(r/p) dp = h*(s) = f*(s)g" (). (3.12)
0

We note that the Mellin-Barnes integral representation (3.9)3 allows us to construct computa-
tionally the fundamental solutions of Eq. (3.2) for any triplet {e, 5,6} by matching their convergent

2The Mittag-Leffler function Eg,u(z) with §, 1 > 0 is an entire transcendental function of order p = 1/3, defined

in the complex plane by the power series
) o
Epp(z) = ngo Fanim >0 =eC

For information on the Mittag-Lefler-type functions the reader may comsult e.g. (5], [12], [32].

3The names refer to the two authors, who in the beginning of the past century developed the theory of these
integrals using them for a complete integration of the hypergeometric differential equation. However, as revisited
in [26], these integrals were first introduced in 1888 by 8. Pincherle (Professor of Mathematics at the University of
Bologna from 1880 to 1928).
As a matter of fact this type of integrals turns out to be useful in inverting the Mellin transforms.
Readers acquainted with Fox H functions can recognize in (3.9) the representation of a certain function of this class,
see e.g. [28], [37). Unfortunately, as far as we know, computing routines for this general class of special functions
are not yet available.
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and asymptotic expansions, as shown in [25] for the first Green function. The interested reader
may take vision of several plots of the reduced Green functions in [25] in a number of cases where
these functions, being non-negative and normalized, can be interpreted as probability densities. In
order to give the reader a better impression about the behaviours of the tails, the logarithmic scale
was adopted.

We also note that the space-time fractional diffusion equation has been analysed (but without
numerical computations) in several papers, see e.g. Anh and Leonenko [1] and references therein.

4 Probability interpretation of the Green functions

For the following cases that allow simplifications in the integrand of Eq. (3.9), we obtain relevant
expressions of the corresponding Green functions that can be interpreted as probability densities.
(a) For j = 1 and {0 < & < 2, 8 == 1} (strictly space fractional diffusion) we have Kﬁff’ (z) =
L2(z), i.e. the class of the strictly stable (non-Gaussian) probability densities [7]%exhibiting fat
tails (with the algebraic decay o |z|~(>+1)) and infinite variance. Their Mellin-Barnes integral
representation reads

11 [T D/a)T(1—s)
Kz,(f)(z)=LZ(z)=o;%/7_m mmsds, (4.1)

where 0 < 7 < min{ca, 1}.

(b) For j = 1,2 and {a = 2, 0 < 8 < 2} (time fractional diffusion including standard diffusion),
we have K;(ﬁj) (z) = 1Mé7/>2(x)/ 2, i.e. the class of the Wright type® probability densities exhibiting
stretched exponential tails. Their Mellin-Barnes integral representation reads

+ioo
0() .y _ L) _LL/7 _Ta=9) sy 42
Kz’ﬁ (E) = 2Mﬁ/2(2) i 2% omi y—ico I‘(] —ﬂS/Z) roas, ( )
where 0 < y<1.

(c) For j = 1 and {0 < a = 8 < 2} (neutral fractional diffusion), we have Kg,(al)(:c) = N&(z),
1.e. the class of the Cauchy type probability densities [25]. Indeed, in this special case, the Mellin-
Barnes integral representation provides an explicit expression which generalizes the Cauchy density,

11 e TETA-2) s
KM =N9:c=——_/ el N\ al 4844
o (@) o(®) az 21 Jy s D(p8)T(1~p3s) 43)
B i_@_/7+im sin(r p 5) 2Sds— %! sin[Z(a — )]
"oz 2mi Jy e Sin(ms/a) m 14 2% cos[F (e — §)] + 22>

4For recent treatises on Lévy stable distributions see e.g. [20], [35), [36], [38].
5The function MS’)(Z) is defined for any order v € (0,1) and Vz € C by

D)im 3 e 1 C.
My (z)'_znll"[—yn-}—(j—u)]’ 0O<v<l, ze

n=0
Tt turns ot that M (2) is an entire function of order p = 1/(1 —v). For v = 1/2 we obtain

M

1/2(z)= V:L_;r-exp (—2%/4) , Ml(;;(z) = %exp (—z%/4) - gerfc (g) .

The M functions are special cases of the Wright function defined by the series representation, valid in the whole
complex plane,
oo o
& = —
Ml = 3 TR

n=0

A>-1, peC, zeC.

Indeed, we recognize M,Ej) (2) = ®_,,j—v(—2), 0 < v < 1. Originally, Wright introduced and investigated this
function with the restriction A > 0 in a series of notes starting from 1933 in the framework of the asymptotic
theory of partitions. Only later, in 1940, he considered the case ~1 < A < 0. For detailed information on the
Wright-type functions the interested reader may consult, e.g. [5] (where, presumably for a misprint, A is restricted
to be non-negative), [10], {11], {21].
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where 0 <y < a.
Based on the arguments outlined in [25], we extend the meaning of probability density to the
cases {0<a<2,0<f< 1} and {1 < § < a < 2} by proving the following composition rules of
the Mellin convolution type:
oo _ . N d.
e[ ] e € o<per,
K@@= 2 (a4)
’ U () N ey B ‘
PR ACEAET) =, 0<fla<t.

'_ghve absolute moments of K 2,(2) (z) can be obtained by considering the Mellin transform of
zKa’(é) (z) which reads, by using (3.9) and (3.10)-(3.11),

/0«+00K2g)(m) 28 ds = o T(1-s/a)T(1+ s/a)T(1+ s) (45)

PA—ps)T(L+ps)T(j+Bs/a)’

where —min{e,1} < R(s) < «. In particular we find f+°° Kg(j)(:v) dr = p (with p = 1/2 if
f = 0). We note that 4.5) is stri i s cancellations i ! i

- We note that Eq. (4.5) is strictly valid as soon as cancellations in the "gamma fraction”
at the RHS are not possible. Then this equation allows us to evaluate (in RY) the (absolute)
mgr(r;)ents of order § for the Green function if —min{e, 1} < & < a. In other words, it states that
K a)g (z) =0 (z”(“'m) as £ — +o0. However, cancellations occur in the following cases where
the restriction § < o is expected to disappear:

a) {101/2= 2,0 =0,0 < 8 < 2} (time fractional diffusion including standard diffusion), for which
p= )

by {I<a<2,0=0~20<§<a} (ertremal diffusion), for which p = 1/0:. We note that this
may happen only for one tail of the extremal density.

We recognize that case a) is included in case b) in the limit & = 2. In the above cases Eq. (4.5)
reduces to

+o0
.y 1 T(1+5s)
KOy pSge— 2 TS -
[ FEO @t LU s (16
and consequently any absolute moment of order § > —1 is finite. We can show that the corre-
sponding Green functions result of the Wright type® and exhibit a stretched exponential decay
according to the asymptotic representation

K:_ﬂa (j)(z) ~ gl [27((1 - ﬁ/a)J—1/2(15/&,)(1/2—]'4%/(:)/(1—B/a)
o [~(a/f - 1) (@B/e) /01D | g oo, (1)

Then, due to the previous discussion, in the cases {0 < @ < 2,0 < § < 1} and {1<f<a<2}
(i.e. strictly space-time-fractional diffusion) we obtain a class of probability densities (s;mmetric
or non-symmetric according to § = 0 or § # 0) which exhibit fat tails (only one fat tail in the
extremal cases) with an algebraic decay o jz|~(*+D) | Thys, they belong to the domain of attraction
of the Lévy stable densities of index « and can be referred to as fractional stable densities.

When the time variable is considered, in all above cases the first Green function evolves in time
as a probability density because it keeps the normalization. The integral over all of IR of the first
Grifn function is independent of time whereas that of the second Green function increases linearly
with time.

SWe have

2—al, y _ 1 ) el (=)™
Ka,B (=) o <D—ﬁ/ﬂt»J—ﬂ/a( ) " T;D m——néﬁm .
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5  Conclusions and outlook

In this paper we have summarized our approach to obtain the fundamental solutions of fractional
diffusion equations and have shown how they can be interpreted as probability densities evolving
in time.

In recent years evolution equations containing fractional derivatives have gained revived interest
in that they are expected to provide suitable mathematical models for describing phenomena of
anomalous diffusion and transport dynamics in complex systems, see e.g. [4], {19}, {23], [24], [29],
[31], [33], [38]. and references therein. We point out the fact that all these fractional evolution
equations can be considered as master equations for random walk models that turn out to be
beyond the classical Brownian motion, see e.g. Klafter et al. [22]. For a recent review we refer
the reader to Metzler and Klafter [30]. Gorenflo and collaborators, see e.g. [8], [13], [14], [15], [17],
[18], have recently proposed a variety of models of random walk, discrete or continuous in space
and time, suitable for simulating fractional diffusion processes.

In [16] Gorenflo and Mainardi have shown how to obtain the space-time fractional diffusion
equation (2.1), in the case 0 < 8 < 1, € = 0, by a properly scaled transition to the limit from a
general master equation.

Acknowledgements. We are grateful to the Italian Group of Mathematical Physics (INDAM),
“to the Erasmus-Socrates project, to the INTAS Project 00-0847, and to the Research Commissions
of the Free University of Berlin and of the University of Bologna for supporting our work.
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