Available online at www.sciencedirect.com

SCIENCE<CﬁDIRECT@ JOURNAL OF
COMPUTATIONAL AND
ot ) APPLIED MATHEMATICS
ELSEVIER Journal of Computational and Applied Mathematics 178 (2005) 321—331

www.elsevier.com/locate/cam

Fox H functions in fractional diffusion

Francesco Mainardi‘, Gianni Pagnirfi, R.K. Saxen&

aDipartimento di Fisica, Universita di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, 1-40126 Bologna, Italy
bistituto per le Scienze dell’Atmosfera e del Clima (ISAC) del CNR, Via Gobetti 101, 1-40129 Bologna, Italy
CDepartment of Mathematics and Statistics, Jan Narain Vyas University, Jodhpur 342005, India

Received 10 November 2003; received in revised form 18 June 2004

Abstract

TheH functions, introduced by Fox in 1961, are special functions of a very general nature, which allow one to
treat several phenomena including anomalous diffusion in a unified and elegant framework. In this paper we express
the fundamental solutions of the Cauchy problem for the space—time fractional diffusion equation in terms of proper
Fox H functions, based on their Mellin—Barnes integral representations. We pay attention to the particular cases of
space-fractional, time-fractional and neutral-fractional diffusion.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

TheH functions, introduced by Fop] in 1961 as symmetrical Fourier kernels, can be regarded as the
extreme generalization of the generalized hypergeometric fungtignseyond the MeijeG functions.
Like the MeijerG functions, the FoX functions turn out to be related to the Mellin—Barnes integrals and
to the Mellin transforms, but in a more general way. After FoxHiHanctions were carefully investigated
by Braaksmd2], who provided their convergent and asymptotic expansions in the complex plane, based
on their Mellin—Barnes integral representation.
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More recently, theH functions, being related to the Mellin transforms, have been recognized to play
a fundamental role in the probability theory and in fractional calculus as well as in their applications,
including non-Gaussian stochastic processes and phenomena of nonstandard (i.e. anomalous) relaxatio
and diffusion, see e.¢1,11-13,15,26-29,32—36]

In section 2, we summarize the essential definitions and notations for thid ftoxctions. In section
3, we introduce the partial differential equation of fractional order (both in space and in time), that is
intended to generalize in a proper way the standard equation for normal diffusion. We also recall the
main results of this generalized equation based on the Fourier—Laplace representation of its fundamental
solution, the so-calle@Green functionThen, in section 4, we provide for the general Green function
a representation in terms of Mellin—Barnes integrals and, consequently, in terms &f femctions.
We then concentrate our attention to the particular but relevant cases of space fractional, time fractional
and neutral fractional diffusion for which the corresponding Green functions are clearly interpreted as
probability densities. Further properties regarding the Green function in the general cases of space—time
fractional diffusion can be extracted from the analysis containd@lhwhere, however, the passage
from the Mellin—Barnes integrals to the correspondififunctions is not treated.

2. The FoxH functions
According to a standard notation, the Raxunction is defined as
m,n 1 m,n \)
Hp,;] (Z) = 2_7_“ gjfp:q (S> z dS, (21)

where 7 is a suitable path in the complex plafieto be disposed latet; = exp{s(log |z| + i arg 2)},
and

omon A(s) B(s)
pr,q(S)Im, (22)
Ay =[] rw;—p». B =[] ra-a;+as), (2.3)
j=1 j=1
q 4
Co)= [] ra-bj+p;). D)= [] I'aj— a9 (2.4)
j=m+1 j=n+1

with 0<n<p, 1<m<q, {a;,b;} € C, {o;, ;} € R*. An empty product, when it occurs, is taken to
be one so

n=0= B(s)=1, m=q<=C(s)=1 n=p< D(s)=1

Due to the occurrence of the factgrin the integrand of (2.1), thid function is, in general, multi-valued,
but it can be made one-valued on the Riemann surface of lmgchoosing a proper branch. We also
note that when the's andp’s are equal to 1, we obtain the Meije@&functionsG’, ; (z).
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The above integral representation of tHefunctions, by involving products and ratios of Gamma
functions, is known to be dflellin-Barnes integratype! A compact notation is usually adopted for
(2.2):

m,n _ gym,n
H,, @) =H,; |:Z

@j. ) j=1...p | (2.5)
(bjs Bj)j=1....q

Thus, the singular points of the kern&lare the poles of the Gamma functions entering the expressions of
A(s) andB(s), that we assume do not coincide. Denotingk\A) and2(B), the sets of these poles, we
write 2(A) N 2(B) = (. The conditions for the existence of thiefunctions can be made by inspecting

the convergence of integral (2.1), which can depend on the selection of the coftand on certain
relations between the parametéus «;} (i =1,..., p) and{b;, §;} (j =1,..., q). For the analysis of

the general case we refer to the specialized treatisésfanctions, e.g[27,28,35]and, in particular to

the paper by Braaksnid], where an exhaustive discussion on the asymptotic expansions and analytical
continuation of these functions is found; see dlis?j.

In the following we limit ourselves to recall the essential properties dfthenctions preferring to later
analyse in detail those functions relatedrctional diffusion As it will be shown later, this phenomenon
depends on one real independent variable and three parameters; in this case we shatbhavie and
m<2,n<2,p<3,g<3.

The contour? in (2.1) can be chosen as follows:

() ¢ = Z_ico.+ico ChOsen in a manner to go fromioco to +ioco leaving to the right all the poles of
#(A), namely the poles; y = (b; +k)/B;; j=1,2,...,m; k=0, 1, ... of the functiond” enteringA(s),
and to left all the poles o#(B), namely the poles; ; = (a; —1-1)/p;; j=1,2,...,n;1=0,1,...
of the functiond” enteringB (s).

(i) ¥ = Y+~ is aloop beginning and ending-&bo and encircling once in the negative direction all
the poles of2(A), but none of the poles aP(B).

(i) ¥ = Z_~ is aloop beginning and ending-abo and encircling once in the positive direction all
the poles of2(B), but none of the poles aP(A).

Braaksma has shown that, independently of the choic# die Mellin—Barnes integral makes sense
and defines an analytic function oin the following two cases:

q p
u>0, 0<|z|<oo, where M=Zﬂj—zaj, (2.6)
j=1 j=1
P o q 8.
u=0, 0<|z| <3, where 5:1_[%.“’1_[/?/. (2.7)
j=1 j=1

On account of the following useful and important formula for Ehéunction

m,n (ajvaj)l,p n,m 1 (1_bj’ﬁj)1,q
4 |:Z =H ’

(bj, Bj)1q TPz |(X=aj, a1,
1As a historical note, we point out that the names refer to the two authors, who in the first 1910s developed the theory of
these integrals using them for a complete integration of the hypergeometric differential equation. However, these integrals were
first used in 1888 by Pincherle, see §28]. Recent treatises on Mellin—Barnes integrals are thof25ii30].

(2.8)
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we can transform thel-function with x < 0 and argumenz to one withu > 0 and argument &. This
property is suitable to compare the results of the theomy &iinctions based on (2.1) withf with the
other one withy ™, often used in the literature.

Other important properties of the Fékfunctions, that can be easily derived from their definition, are
included in the list below:

(i) The H-function is symmetric in the set of pairs

(a1, 01), ..., (an, o), (@nt1, tnt1), - -, (ap, fxp)’

(b1, B1). -+ . (b, B) @NA(Dg1, Brpya). - - . (by. By

(i) If one of the(a;, o), j=1,...,n, is equal to one of theb;, ﬁj), j=m+1 ..., q; [orone of
the pairs(a;, o), j=n+1,..., pis equal to one of theb;, ﬁj), j=1,...,m], then theH-function
reduces to one of the lower order, thatisg andn [or m| decrease by a unity. Providad: 1 andg > m,
we have

(aj,oj)1 —1 (aj,oj)2
Hm,n z J> 2]/ L p =Hm;n - z J> 2]/ 4,p , (2.9)
PO gy Brg-a(ar, ey | PR T 0, Baga |
s j — ba i m—1.n — s j — 1
P (aj, o)1, p—1 (b1, B1) :Hp—]_l’qfl . (aj, @)1, p-1 . (2.10)
L G B By Bi2g | L] @i Biag
(i)
(aj,oj)1,p (aj +onj,0)1)
ZJHm’n z » = H"mn z i . (211)
P4 |: (bj, Bj)1q P4 (bj+ 0B, Bj)1g
(iv)
1 (aj,ocj)lp (aj,coj)1
-H'' |z Pl=H" ¢ P, e>0. (2.12)
c P [ bj, Bj)1gq P4 (bj, cBjlrgy

The convergent and asymptotic expansions {fes 0 orz — oo) are mostly obtained by applying
the residue theorem in the poles (assumed to be simple) of the Gamma functions etiteriogB (s)
that are found inside the specially chosen path. In some cases (in particutarGf<— B(s) = 1) we
find an exponential asymptotic behaviour.

In the presence of a multiple paie of orderN the treatment becomes more cumbersome because we
need to expand in power series at the pole the product of the involved functions, inclticngl to take
the firstN terms up to(s — so)¥ ~* inclusive. Then the coefficient @§ — so)V ~* is the required residue.
Let us consider the cagé= 2 (double pole) of interest for the fractional diffusion. Then, the expansions
for the Gamma functions are of the type

I'(s) = I'(s0) [1+ (s0)(s — 50) + O((s — s0)*)]. s = s0. s0# 0, =1, —2,...,
G

- Tk+ (s + k)]
wherek =0, 1, 2, ... andy/(z) denotes the logarithmic derivative of titdunction,
I'(z)
I'(z)

I'(s) [+ yk+1)(s+k) +0O(s + k)], s— —k,

d
Y(z) = a@ log I'(z) =
Z

’
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whereas the expansion gf yields the logarithmic term

2 =791+ log z(s — s0) + O((s — 50)°], 5 — s0.

3. The fractional diffusion equation

An interesting way to generalize the classical diffusion equation

2
a o]
@u(x,t):%u(x,t), —oco<x<-+oo, t=0 (3.1)
is to replace in (3.1) the partial derivatives in space and time by suitable linear integro-differential opera-
tors, to be intended as derivatives of noninteger order, that allows the corresponding Green function (see
below) to be still interpreted as a probability density evolving in time but with an appropriate similarity
law.

It turns out that this generalized diffusion equation, that we refer gpase—time fractional diffusion
equation is

«Dgu(x,t)= ,Dfu(x,t), —oc0o<x <400, =0, (3.2)
where thex, 0, p are real parameters restricted as follows:
O<au<2, |0|<min(e,2—a), O0<p<L2. (3.3)

Here , D j and th are integro—differential operators, tReesz—Feller space-fractional derivatioé
ordero and asymmetry and theCaputo time-fractional derivativef orderp, respectively. The allowed
region for the parametersand 6 in the plane{«, 0} is called theFeller—Takayasu diamondee e.g.
[8,9,21]

The relevant cases of the space—time fractional diffusion equation (3.2) include, in addition to the
standard case oformal diffusion{« = 2, § = 1}, the space-fractional diffusiof0 <« < 2, § = 1}, the
time-fractional diffusion{a = 2, 0 < < 2} and theneutral-fractional diffusionf0 < « = g < 2}.

Let us now resume the essential definitions of the fractional derivatives in (3.2) based on their Fourier
and Laplace representations. R

By denoting the Fourier transform of a sufficiently well-behaved (generalized) fungtion f (x) =
F{f(x); k} = f_+o°O° e f(x)dx, x € R, the Riesz—Fellelspace-fractional derivative of orderand
skewnes9 turns out to be defined by

F D} f(0); k) = ) F (), (3.4)
WO30) = [i|* 92 0 <52 10]< min{o, 2 — a). (3.5)

Thus, we recognize that tHeiesz—Fellederivative is required to be the pseudo-differential operator
whose symbol—;bg(;c) is the logarithm of the characteristic function of a gene@ly strictly stable
probability density withindex of stabilityx and asymmetry paramet@r(improperly calledskewnegs
according to Feller's parameterization as revisited by Gorenflo et al., s€8,8]g.
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For # = 0 we have a symmetric operator with respect,tthat can be interpreted as

d2 o/2

This can be formally deduced by writing|x|* = —(x?)*/2. For O< « < 2 and|6| < min{z«, 2 — «}, the
Riesz—Fellederivative can be shown to admit the integral representation ir dognain,

D o= "D {sin[<a tom2 [ L8 fl)ﬂ_ UCONY;
+ sin[(x — 0)n/2] /OO A él) mAC) dé} . (3.7)
0 6 +o

By denoting the Laplace transform of a sufficiently well-behaved (generalized) funﬁ(ic)nf(s) =
L{f@); s}:fgo e~ f(r)dt, R(s) > a s, theCaputatime-fractional derivative of ordet(m —1 < f<m,
m € N) turns out to be defined through

m—1
24DL f0isy=s" fl9) = 3 s pOON), m—1<p<m, (3.8)
k=0

This leads to define, see e[@,31],

1 . () de m—l<pe
b - m’
DL f(1) == I(;Snm —B) 70 ¢ — pftiom -

am f@, p=m.
The reader should observe that tbaputofractional derivative represents a sort of regularization in the
time origin for the classicaRiemann—Liouvilldractional derivativé?, see e.g[7,31].

When the diffusion equations (3.1), (3.2) are equipped by the initial and boundary conditions

u(x,0") =ox), u(too,1)=0, (3.10)

their solution reads (x, t) = ff;o G(&, 1) p(x — &) dé, whereG (x, t) denotes the fundamental solution
(known as theGreen functiof corresponding te(x) = 5(x), the Dirac generalized functich.

Itis straightforward to derive from (3.2) the Fourier—Laplace transform of the Green function by taking
into account the Fourier transform for tReesz—Felleispace-fractional derivative, see (3.4)—(3.5), and
the Laplace transform for th@aputotime-fractional derivative, see (3.8). We have

—
—

—YR)G ) 4, 8) = 5P Gl (e, 5) — s, (3.11)

2\We note that th€aputofractional derivative coincides with that introduced independently by Djrbashian and Nersesian,
which has been adopted by KochufiEs], for treating initial value problems in the presence of fractional derivatives.

3We note that when & <2 to Eq. (3.2) we must add a second initial condition of typer, 07) = y(x), which implies
two Green functions correspondingfte(x, 07) = d(x), u;(x, 07) = 0} and{u(x, 07) =0, u;(x, 07) = d(x)}. Here we limit
ourselves to consider only the first Green function. Fotithe-fractional diffusiorequation the second Green function has been
investigated if22].



F. Mainardi et al. / Journal of Computational and Applied Mathematics 178 (2005) 321-331 327

so that
e p—1
N
GOk, 5) = —r—. (3.12)
o,f Sﬁ + wS(K)
By using the known scaling rules for the Fourier and Laplace transforms, we infer without inverting the
two transforms,

Gyyx.t)=17"K ) y(x/1)),  y=p/a. (3.13)
where the one-variable functidﬁfﬂ is thereduced Green functioandx /¢’ is thesimilarity variable

e~
—

We note fromG ! ,(0, s) = 1/s <= G 4(0, 1) = 1, thenormalization property
+00 +00
/ G y(x. 1) dx =/ K p(x)de =1, (3.14)
—00 ’ —00 ’

and, fromy? () = ¥ (—x) = y;(—x), thesymmetry relation

KJ y(—x) = Kajg(x), (3.15)

which allows us to restrict our attention ta> O.
Wheno = 2 (0 = 0) andp = 1 the inversion of the Fourier—Laplace transform in (3.12) is trivial: we
recover the Gaussian density, evolving in time with variasfce: 2¢, typical of the normal diffusion,

1
G31(x, 1) = PN exp(—x?/(41)), xe€R, >0, (3.16)

which exhibits the similarity law (3.13) with= %

4. Mellin—Barnes and FoxH representations of the Green function

Mainardi et al.[21] have inverted the Fourier—Laplace transform (3.12) of the Green function by
passing through the Mellin transform. Here we recall and complement their main results by introducing
the representation of threduced Green functiom terms of proper Fo¥ functions, starting from its
generaMellin—Barnes integratepresentation fat > 0,

K0 (0 11 /7+i°° I(s/o)[(1—s/a)[(1—s)
X)—= ——
»h oax 27l Jy—joo I'([(2 — 0)/20]s) (1 — [(o — 0)/20]s)I'(1 — (B/o0)s)
with 0 <y < min(«, 1) under the conditiomd| <2 — S.
From theMellin—Barnes representatiof@.1) we now derive the representatlonloj (x) in terms of
a propem function, taking into account the theory of Fox functions briefly summanzed in Section 2.

At first we distinguish the two cases (ax  and (b)x > p for which the corresponding functions
turn out to be singular in = 0 andoo, respectively. Taking > 0, we get

1 5, [1]0H0n0%5h
H - 9 ’
Kap) = Hai [x obHobozsy | *=F

x* ds, 4.1)

(4.2a)
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1 . Jabadha g
H .
Kap) =<5 [x whanasy | *7F

Wheno = ff the correspondingl function is singular iy = x = 1. However, the singularity is removable
because, surprisingly, the corresponding (reduced) Green function can be expressed (in explicit form) in
terms of a (nonnegative) elementary function, that we denomo?w), as it is shown irf21]. We refer
to this case as toeutral-fractional diffusiorand the corresponding representation throddhinctions
is redundant. Explicitly we write, fat > 0,

Neutral diffusion 0 <o = g <2; 0< min{a, 2 — a},

1 x*Lsin[(n/2) (o — 0)]
n 14+ 2x*cod(n/2)(a — 0)] + x2*

As far as we know, this case of fractional diffusion seems not so well treated in the literature. We note that
N!/(x) may be considered the fractional generalization (with skewness) of the well-known (symmetric)
Cauchy density.

For the other particular cases outlined in Section 3 we have to properly use properties (2.9)—(2.11) in
general expressions (4.2a)—(4.2b) in order to obtain the corresponding representations in terms of simpler
Fox H functions.

Normal diffusion « =2, f=1; 6 =0.

The case of normal (or standard) diffusion is known to be characterized liyathssianprobability
density function. Indeed the reduced Green function reads

(4.2b)

Kf’“ = Nf(x) = (4.3)

K91(x) = D(x) = 2[ exp(—x2/4), x €R, (4.4)
so, forx > 0, we have
L1 e ra-s) o 1ol |G
D(X) ij 27“ / - F(TS/Z) ds = E Hl,l X (0’ 1) . (45)

Space-fractional diffusiar0 <« < 2, f = 1; [0] < min{«, 2 — «}.
In this case the reduced Green functibﬁ 1(x) is known to be thec-strictly stable Léevy densitihat

we denote b)Lg(x). Then, forx > 0, we have

1 [t I'(s/0)I(1—s)
Ky (x) = Ly(x) = owx 21 oo T([(2— 0)/2005) (1 — [(o — 0)/22] 5 (4.6)
with 0 <y <min(e, 1), Then, by distinguishing the two cases as in Egs. (4.2), we obtain:
(@) 0<au<1;10|<q,
1 1D G5 50
L )— “H o * 20 (4.7a)
- 22[ &, )(zwz“)}
(b) l<a<2;]01<2—a,
N N ,
Loy = = Hyj | x A-Dd-25 50 : (4.7b)
o = 0.1) (120, 20
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We note that it was Schneid@3], who first in 1986 has recognized that all stable probability densities
can be represented in terms of RgxXunctions.

Previously, the stable (non-Gaussian) densities were known in general through their (convergent and
asymptotic) series representations that in a few particular cgses 3, 0 = 3}, {« = 3,0 = 3},
{oo = % 0=0}, {a= %’ 0= %}, were interpreted in terms of known special functions. In his remarkable
(but almost entirely neglected) article, Schneider has also pointed out the errors present in the literature
for some of the above particular cases.

More recently, the representation of the stable densities through Mellin—-Barnes integrals has been
exhaustively treated by a number of authors d8&)21]

Time-fractional diffusion«=2,0<f<2;0=0.

In this case the reduced Green functiﬁﬁl(x) is known to be gorobability density with stretched
exponential tailsthat we denote (for historical reasons) %)Mﬁ/z whereMg,» denotes a Wright-type

function* We thus write
K3 5(x) == 3 Mp/a(x), (4.8)

where, forx > 0,

M) 11 (e r@d-s | L0
X)=—-— ————x Qs=H{ | |x
b/z x21 Jo_ise T(1— Ps/2) 11

B
+2) } (4.9)

withO0<y<1.
As a check we note that the simpldrfunction in (4.5) for the Gaussian density is recovered from
(4.7a) in the limitx = 2 and from (4.8)—(4.9) in the limjg = 1.

4The functionM, (z) is defined for any order € (0, 1) andVz € C by

oo oo

_ (-2)" A O .
M,(z) —’; m = ; ngl mr(\l’l) sin(zvn).

It turns out thatM, (z) is an entire function of order = 1/(1 — v), which provides a generalization of the Gaussian and of the
Airy function. In fact, we obtain

1 .
M1)2(2) = 7 exp(—z2/4),  Miy3(z) = 323 Ai(z/3Y3).

M, (z) is a special case of the Wright functidn_,(z). Originally, Wright[37—-39]introduced and investigated the function

o n

Z
G()=Y . >0, zeC,
(@) S TG+ ) # ‘
n=

with the restriction >0, in a series of notes starting from 1933 in the framework of the asymptotic theory of partitions. Only
later, in 1940, h¢40] considered the casel < 4 < 0. We note that in the handbook of the Bateman Project[3je®0l. 3, Ch.

18, presumably for a mispring, is restricted to be nonnegative. In his first analysis of the time fractional diffusion equation,
Mainardi[17], aware of the Bateman project but not of the 1940 paper by Wright, introduced the two (Wrigh&tyilery
functions F,(z) := ¢_, o(—z) andM,(z) := &_, 1_,(—z) with 0 <v < 1, inter-related througlt, (z) = vz M, (z). For detailed
information on the Wright-type functions (possibly related to time-fractional diffusion equations), the interested reader may
consult e.g[18-20,5,6,10,14]
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5. Conclusions

As aconclusive remarkve point out that the nonnegativity of the above functions, obtained in the
particular cases of neutral, space and time fractional diffusion, are relevant in proving that, in the general
case of space—time fractional diffusion, the Green functions are still spatial probability densities evolving
in time, provided that & o<2 with 0< <1 and K f<«<2, see[21]. The proof is based on the
convolution theorem for the Mellin transforms and provides interestitgrdination formulassed24].

This fact could also be shown by using the properties of theHFunctions.
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