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Salvatore Pincherle: the pioneer of the Mellin–Barnes integrals
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Abstract

The 1888 paper by Salvatore Pincherle (Professor of Mathematics at the University of Bologna) on general-
ized hypergeometric functions is revisited. We point out the pioneering contribution of the Italian mathemati-
cian towards the Mellin–Barnes integrals based on the duality principle between linear di5erential equations and
linear di5erence equation with rational coe7cients. By extending the original arguments used by Pincherle, we
also show how to formally derive the linear di5erential equation and the Mellin–Barnes integral representation
of the Meijer G functions.
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1. Preface

In Vol. 1, p. 49 of Higher Transcendental Functions of the Bateman Project [5] we read “Of
all integrals which contain gamma functions in their integrands the most important ones are the
so-called Mellin–Barnes integrals. Such integrals were Drst introduced by Pincherle, in 1888 [21];
their theory has been developed in 1910 by Mellin (where there are references to earlier work) [17]
and they were used for a complete integration of the hypergeometric di5erential equation by Barnes
[2]”.

In the classical treatise on Bessel functions by Watson [27, p. 190], we read “By using integrals of
a type introduced by Pincherle and Mellin, Barnes has obtained representations of Bessel functions: : :”
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Salvatore Pincherle (1853–1936) was Professor of Mathematics at the University of Bologna from
1880 to 1928. He retired from the University just after the International Congress of Mathematicians
that he had organized in Bologna, following the invitation received at the previous Congress held in
Toronto in 1924. He wrote several treatises and lecture notes on Algebra, Geometry, Real and Com-
plex Analysis. His main book related to his scientiDc activity is entitled “Le Operazioni Distributive
e loro Applicazioni all’Analisi”; it was written in collaboration with his assistant, Dr. Ugo Amaldi,
and was published in 1901 by Zanichelli, Bologna. Pincherle can be considered one of the most
prominent founders of the Functional Analysis, as pointed out by J. Hadamard in his review lecture
“Le dOeveloppement et le rôle scientiDque du Calcul fonctionnel”, given at the Congress of Bologna
(1928). A description of Pincherle’s scientiDc works requested from him by Mittag–LeQer, who was
the Editor of Acta Mathematica, appeared (in French) in 1925 on this prestigious journal [22]. A
collection of selected papers (38 from 247 notes plus 24 treatises) was edited by Unione Matematica
Italiana (UMI) on the occasion of the centenary of his birth, and published by Cremonese, Roma
1954. Note that Pincherle was the Drst President of UMI, from 1922 to 1936.

Here we point out that the 1888 paper (in Italian) of Pincherle on the Generalized Hypergeometric
Functions led him to introduce the afterwards named Mellin–Barnes integral to represent the solution
of a generalized hypergeometric di5erential equation investigated by Goursat in 1883. Pincherle’s
priority was explicitly recognized by Mellin and Barnes themselves, as reported below.

In 1907 Barnes, see p. 63 in [1], wrote: “The idea of employing contour integrals involving
gamma functions of the variable in the subject of integration appears to be due to Pincherle, whose
suggestive paper was the starting point of the investigations of Mellin (1895) though the type of
contour and its use can be traced back to Riemann”. In 1910 Mellin, see p. 3265 in [17], devoted
a section (Section 10: Proof of Theorems of Pincherle) to revisit the original work of Pincherle;
in particular, he wrote “Before we are going to prove this theorem, which is a special case of a
more general theorem of Pincherle, we want to describe more closely the lines L over which the
integration preferably is to be carried out”. [free translation from German].

The Mellin–Barnes integrals are the essential tools for treating the two classes of higher transcen-
dental functions known as G and H functions, introduced by Meijer (1946) [13] and Fox (1961)
[6], respectively, so Pincherle can be considered their precursor. For an exhaustive treatment of the
Mellin–Barnes integrals, we refer to the recent monograph by Paris and Kaminski [19].

The purpose of our paper is to let know the community of scientists interested in special functions
the pioneering 1888 work by Pincherle, that, in the author’s intention, was devoted to compare two
di5erent generalizations of the Gauss hypergeometric function due to Pochhammer and to Goursat.
Incidentally, for a particular case of the Goursat function, Pincherle used an integral representation
in the complex plane that in future was adopted by Mellin and Barnes for their treatment of the
generalized hypergeometric functions known as pFq(z). We also intend to show, in the original
part of our paper, that, by extending the original arguments by Pincherle, we are able to provide
the Mellin–Barnes integral representation of the transcendental functions introduced by Meijer (the
so-called G functions).

The paper is divided as follows. In Section 2, we report the major statements and results of the
1888 paper by Pincherle. In Section 3, we show how it is possible to originate from these results the
Meijer G functions by a proper generalization of Pincherle’s method. Finally, Section 4 is devoted
to the conclusions. We Dnd it convenient to reserve an appendix for recalling some basic notions
for the generalized hypergeometric functions and the Meijer G functions.
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2. The Pochhammer and Goursat generalized hypergeometric functions via Pincherle’s arguments

The 1888 paper by Pincherle is based on what he called “duality principle”, which relates linear
di5erential equations with rational coe7cients to linear di5erence equations with rational coe7cients.
Let us remind that the sentence “rational coe7cients” means that the coe7cients are in general ra-
tional functions (i.e. ratio between two polynomials) of the independent variable and, in particular,
polynomials. By using this principle with polynomial coe7cients Pincherle showed that two gen-
eralized hypergeometric functions proposed and investigated, respectively, by Pochhammer (1870),
see [23], and by Goursat (1883), see [7,8], can be obtained and related to each other. 1

The generalized hypergeometric functions introduced by Pochhammer and Goursat considered by
Pincherle are solutions of linear di5erential equations of order n with polynomial coe7cients, that we
report in the appendix. As a matter of fact, the duality principle states the correspondence between
a linear ordinary di<erential equation (ODE) and a linear >nite di<erence equation (FDE). The
coe7cients of both equations are assumed to be rational functions, in particular polynomials. In his
analysis [21], Pincherle considered the correspondence between the following equations,

m∑
h=0

(ah0 + ah1e−t + ah2e−2t + · · ·+ ahpe−pt) (h)(t) = 0; (2.1)

p∑
k=0

[a0k + a1k(x + k) + a2k(x + k)2 + · · ·+ amk(x + k)m]f(x + k) = 0; (2.2)

where  (t) and f(x) are analytic functions. These functions are required to be related to each other
through a Laplace-type transformation  (t) ↔ f(x) deDned by the formulas

(a) f(x) =
∫
l
e−xt (t) dt; (b)  (t) =

1
2�i

∫
L
e+xtf(x) dx; (2.3)

where l and L are appropriate integration paths in the complex t and x plane, respectively.
The singular points of the ODE are the roots of the polynomial

am0 + am1z + am2z2 + · · ·+ ampzp = 0 (2.4)

whereas the singular points of the FDE are the roots of the polynomial

a00 + a10z + a20z2 + · · ·+ am0zm = 0: (2.5)

For the details of the above correspondence Pincherle refers to the 1885 fundamental paper by
PoincarOe [24] 2 and his own 1886 note [20]. Here, we limit ourselves to point out what can be

1 In fact, translating from Italian, the author so writes in introducing his paper: “It is known that to any linear di5erential
equation with rational coe7cients one may let correspond a linear di5erence equation with rational coe7cients. In other
words, if the former equation is given, one can immediately write the latter one and vice versa; furthermore, from the
integral of the one, the integral of the latter can be easily deduced. This relationship appears to be originated by a sort of
duality principle of which, in this note, I want to treat an application concerning generalized hypergeometric functions”.

2 For an account of PoincarOe’s theorem upon which Pincherle based his analysis the interested reader can consult the
recent book by Elaydi [4, pp. 320–323].
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easily seen from a formal comparison between the ODE (2.1) and the FDE (2.2). We recognize
that the degree p of the coe7cients in e−t of the ODE provides the order of the FDE, and that the
order m of the ODE gives the degree in x of the coe7cients of the FDE. Vice versa, the degree m
of the coe7cients of the FDE provides the order of the ODE, and the order p of the FDE gives
the degree in e−t of the coe7cients of the ODE.

Pincherle’s intention was to apply the above duality principle in order to compare the generalized
hypergeometric function introduced by Pochhammer and governed by (A.7) with that by Goursat
governed by (A.6). Using his words, he proved that the family of the Pochhammer functions (of
arbitrary order p) originates from a linear FDE (of order p) whose coe7cients are polynomials of
the Drst degree in x, and that the family of the Goursat functions (of arbitrary order m) originates
from a linear ODE (of order m) whose coe7cients are polynomials of the Drst degree in x = e−t .
As a consequence of the duality principle there is a mutual correspondence between the properties
of the functions belonging to one family and to the other.

For the Pochhammer function he started from the ODE of the Drst order

(a00 + a01e−t + a02e−2t + · · ·+ a0pe−pt) (t)

+ (a10 + a11e−t + a12e−2t + · · ·+ a1pe−pt) (1)(t) = 0; (2.6)

to be put in correspondence with the FDE

(a00 + a10x)f(x) + [a01 + a11(x + 1)]f(x + 1) + [a02 + a12(x + 2)]f(x + 2)

+ · · ·+ [a0p + a1p(x + p)]f(x + p) = 0: (2.7)

In this case Pincherle was able to show that the solution f(x) of the FDE (2.7), obtained through
the formula (a) in (2.3), depends on p parameters, whose logarithms are the singular points of the
ODE (2.6). With respect to each of these parameters, f(x) satisDes a linear ODE of the Pochhammer
type of order p.
For the Goursat function he started from a FDE of the Drst order

[a00 + a10x + a20x2 + · · ·+ am0xm]f(x)

+ [a01 + a11(x + 1) + a21(x + 1)2 + · · ·+ am1(x + 1)m]f(x + 1) = 0; (2.8)

to be put in correspondence to the linear ODE of order m

(a00 + a01e−t) (t) + (a10 + a11e−t) (1)(t) + (a20 + a21e−t) (2)(t)

+ · · ·+ (am0 + am1e−t) (m)(t) = 0: (2.9)

Using a result of Mellin, see [14,15], Pincherle wrote the solution of the FDE (2.8) as

f(x) = cx
m∏

�=1

�(x − ��)
�(x − ��)

; (2.10)
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where the ��’s and ��’s are, respectively, the roots of the algebraic equations

a00 + a10x + · · ·+ am0xm = am0

m∏
�=1

(x − ��) = 0;

a01 + a11(x + 1) + · · ·+ am1(x + 1)m = am1

m∏
�=1

(x − ��) = 0 (2.11)

and c is a constant. If am0; am1 are both di5erent from zero, we can assume c =−am0=am1.
Pincherle showed that, by setting z = cet , the ODE of order m (2.9) is nothing but the Goursat

di5erential equation (A.6).
Furthermore, in the special case am1 = 0, he gave the following relevant formula for the solution

 (t) =
1
2�i

∫ a+i∞

a−i∞
�(x − �1)�(x − �2) · · ·�(x − �m)

�(x − �1)�(x − �2) · · ·�(x − �m−1)
ext dx; (2.12)

where a¿R{�1; �2; : : : ; �m}. We recognize in (2.12) the Drst example in the literature of the (after-
wards named) Mellin–Barnes integral. The convergence of the integral was proved by Pincherle by
using his asymptotic formula for �(a+ i�) as � → ±∞. 3 So, for a solution of a particular case of
the Goursat equation, Pincherle provided an integral representation that later was adopted by Mellin
and Barnes for their treatment of the generalized hypergeometric functions pFq(z). Since then, the
merits of Mellin and Barnes were so well recognized that their names were attached to the integrals
of this type; on the other hand, after the 1888 paper (written in Italian), Pincherle did not pursue on
this topic, so his name was no longer related to these integrals and, in this respect, his 1888 paper
was practically ignored.

3. The Meijer transcendental function via Pincherle’s arguments

In more recent times other families of higher transcendental functions have been introduced to
generalize the hypergeometric function based on their representation by Mellin–Barnes type integrals.
We especially refer to the so-called G and H functions, brieUy recalled in the appendix.
In this section (the original part of our paper), we show that by extending the original arguments

by Pincherle based on the duality principle we are able to provide the di5erential equation and the
Mellin–Barnes integral representation of the G functions. However, we note that these arguments,
being based on equations with rational coe7cients, do not allow us to treat the Fox H functions,
since for them an ordinary di5erential equation cannot be found in the general case.

Our starting point is still the “duality principle” that involves a FDE of the >rst order as in
Pincherle’s approach for the Goursat function, but, at variance of Eq. (2.8), we now allow that the
degree of the two polynomial coe7cients are not necessarily equal. Setting p; q the degrees of these

3 We also note the priority of Pincherle in obtaining this asymptotic formula, as outlined by Mellin, see e.g. [16, pp.
330–331], and [17, p. 309]. In his 1925 “Notices sur les travaux” [22, p. 56, Section 16] Pincherle wrote “Une expression
asymptotique de �(x) pour x → ∞ dans le sens imaginaire qui se trouve dans [21] a OetOe attribuOee Va d’autres auteurs,
mais Mellin m’en a rOecemment rOevendiquOe la prioritOe”. This formula is fundamental to investigate the convergence of the
Mellin–Barnes integrals, as one can recognize from the detailed analysis by Dixon and Ferrar [3], see also [19].
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coe7cients, our FDE reads

[a00 + a10x + a20x2 + · · ·+ ap0xp]f(x)

+ [a01 + a11(x + 1) + a21(x + 1)2 + · · ·+ aq1(x + 1)q]f(x + 1) = 0: (3.1)

We can prove after some algebra that the associated ODE turns out to be independent of the order
relation between p and q and reads

p∑
h=0

ah0 (h)(t) + e−t
q∑

h=0

ah1 (h)(t) = 0: (3.2)

As we have learnt from Pincherle’s analysis, the solution  (t) of ODE (3.2) can be expressed in
terms of the solution f(x) of FDE (3.1), according to the integral representation (b) in Eq. (2.3).
Now, in view of Mellin’s results used by Pincherle (see also Milne–Thomson [18, Section 11.2, p.

327]), we can write the solution of (3.1) in terms of products and fractions of � functions. Denoting
by �j (j = 0; 1; : : : ; p) and �k (k = 0; 1; : : : ; q) the roots of the algebraic equations

a00 + a10x + · · ·+ ap0xp = ap0

p∏
j=1

(x − �j) = 0;

a01 + a11(x + 1) + · · ·+ aq1(x + 1)q = aq1

q∏
k=1

(x − �k) = 0 (3.3)

we can write the required solution as

f(x) = cx
∏p

j=1 �(x − �j)∏q
k=1 �(x − �k)

; c =−ap0

aq1
: (3.4)

We note, by using the known properties of the Gamma function, that Eq. (3.4) can be re-written in
the following alternative form:

f(x) = cx
∏q

k=1 �(1 + �k − x)∏p
j=1 �(1 + �j − x)

; c = (−1)p−q+1 ap0

aq1
: (3.5)

Furthermore, introducing the integers m; n such that 06m6 q, 06 n6p, we can combine the
previous formulas (3.4)–(3.5) and obtain the alternative form

f(x) = cx
∏n

j=1 �(x − �j)
∏m

k=1 �(1 + �k − x)∏p
j=n+1 �(1 + �j − x)

∏q
k=m+1 �(x − �k)

(3.6)

with

c = (−1)m+n−p+1 ap0

aq1
: (3.7)

We note that Eq. (3.6) reduces to the Pincherle expression (2.10) by setting {n=p= q; m=0}, and
to Eqs. (3.4), (3.5) by setting {n = p;m = 0}; {n = 0; m = q}, respectively. By adopting the form
(3.6)–(3.7), we have the most general expression for f(x) which in its turn allows us to arrive at
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the most general solution  (t) of the corresponding ODE (3.2) in the form

 (t) =
1
2�i

∫
L
cx

∏n
j=1 �(x − �j)

∏m
k=1 �(1 + �k − x)∏p

j=n+1 �(1 + �j − x)
∏q

k=m+1 �(x − �k)
ext dx; (3.8)

where L is an appropriate integration path in the complex x plane.
Now, starting from (3.2) and (3.7)–(3.8) it is not di7cult to arrive at the general G function

namely at its ODE and at its Mellin–Barnes integral representation, both given in the appendix. For
this purpose, we need only to carry out some algebraic manipulations and obvious transformations
of variables.

We Drst note that using (3.3) ODE (3.2) reads
ap0

p∏
j=1

(
d
dt

− �j

)
+ aq1e−t

q∏
k=1

(
d
dt

− �k − 1
)  (t) = 0: (3.9)

Then, putting

z = cet ; u(z) =  [t(z)]; aj = 1 + �j; bk = 1 + �k (3.10)

and using (3.7), we get from (3.9)
(−1)p−m−nz

p∏
j=1

(
z
d
dz

− aj + 1
)
−

q∏
k=1

(
z
d
dz

− bk

) u(z) = 0; (3.11)

which is just the ODE satisDed by the Meijer G function of orders m; n; p; q, see (A.10). Of course, at
least formally, the Mellin–Barnes integral representation of the G function (A.8)–(A.9) is recovered
as well and reads (setting s= x)

u(z) =
1
2�i

∫
L

∏m
k=1 �(bk − s)

∏n
j=1 �(1− aj + s)∏q

k=m+1 �(1− bk + s)
∏p

j=n+1 �(aj − s)
zs ds: (3.12)

4. Conclusions

We have revisited the 1888 paper (in Italian) by Pincherle on generalized hypergeometric func-
tions, based on the duality principle between linear di5erential equations and linear di5erence
equation with rational coe7cients. We have pointed out the pioneering contribution of the Italian
mathematician towards the afterwards named Mellin–Barnes integral representation that he was able
to provide for a special case of a generalized hypergeometric function introduced by Goursat in 1883.
By extending his original arguments we have shown how to formally derive the ordinary di5erential
equation and the Mellin–Barnes integral representation of the G functions introduced by Meijer in
1936–1946. So, in principle, Pincherle could have introduced the G functions much before Meijer
if he had intended to pursue his original arguments in this direction. Finally, we like to point out
that the so-called Mellin–Barnes integrals are an e7cient tool to deal with the higher transcenden-
tal functions. In fact, for a pure mathematics view point they facilitate the representation of these
functions (as formerly indicated by Pincherle), and for an applied mathematics view point they can
be successfully adopted to compute the same functions. In this respect we refer to the recent paper
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by Mainardi et al. [10], who have computed the solutions of di5usion-wave equations of fractional
order by using their Mellin–Barnes integral representation.
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Appendix. Some generalizations of the hypergeometric functions

The purpose of this Appendix is to provide a survey of some higher transcendental functions that
have been proposed for generalizing the hypergeometric function. In particular, we shall consider the
functions investigated by Pochhammer (1870) and Goursat (1883), that have interested Pincherle in
his 1888 paper, and the G functions introduced by Meijer (1936–1946), since they are re-derived
in our present analysis by extending the arguments by Pincherle. Our survey is essentially based on
the classical handbook of the Bateman Project [5] and on the more recent treatise by Kiryakova [9].

Let us start by recalling the classical hypergeometric equation. If a homogeneous linear di5erential
equation of the second order has at most three singular points we may assume that these are 0; 1;∞.
If all these singular points are “regular”, then the equation can be reduced to the form

z(1− z)
d2u
dz2

+ [c − (a+ b+ 1)z]
du
dz

− abu(z) = 0; (A.1)

where a; b; c are arbitrary complex constants. This is the hypergeometric equation. Taking c 
=
0;−1;−2; : : : ; and deDning the Pochhammer symbol

($)n =
�($+ n)
�($)

; i:e: ($)0 = 1; ($)n = $($+ 1) · · · ($+ n− 1); n= 1; 2; : : :

then the solution of Eqs. (A.1), regular at z = 0, known as Gauss hypergeometric function, turns
out to be

u(z) =
∞∑
n=0

(a)n(b)n
(c)nn!

zn := F(a; b; c; z): (A.2)

The above hypergeometric series can be generalized by introducing p parameters a1; : : : ; ap (the
numerator-parameters) and q parameters b1; : : : ; bq (the denominator-parameters). The ensuing series

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
:= pFq(a1; : : : ; ap; b1; : : : ; bq; z); (A.3)
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or, in a more compact form,
∞∑
n=0

%p
j=1(aj)n

%q
k=1(bj)n

zn

n!
:= pFq[(aj)

p
1 ; (bk)

q
1; z)] (A:3′)

is known as the generalized hypergeometric series. In general (excepting certain integer values of
the parameters for which the series fails to make sense or terminates 4 ) the series pFq converges for
all Dnite z if p6 q, converges for |z|¡ 1 if p= q+1, and diverges for all z 
= 0 if p¿q+1. The
resulting generalized hypergeometric function u(z) = pFq will satisfy a generalized hypergeometric
equation. If we note that Eq. (A.1) satisDed by u(z) = F(a; b; c; z) = 2F1(a; b; c; z) can be written in
the equivalent form (see e.g. Rainville [25, Section 46, p. 75]):[

z
(
z
d
dz

+ a
)(

z
d
dz

+ b
)
− z

d
dz

(
z
d
dz

+ c − 1
)]

u(z) = 0; (A:1′)

we arrive at the equation of order n= q+ 1 for u(z) = pFq[(aj)
p
1 ; (bk)

q
1; z)]:

z p∏
j=1

(
z
d
dz

+ aj

)
− z

d
dz

q∏
k=1

(
z
d
dz

+ bk − 1
) u(z) = 0: (A.4)

The above equation containing the operator z d=dz can be written in a more explicit form by using
D = d=dz, see e.g. [5, Section 42, p. 184]. Distinguishing between the cases p6 q and p= q+ 1,
we get the following general equations in v= v(z):

zqDq+1v+
q∑

�=1

z�−1(A�z − B�)D�v+ A0v= 0; p6 q; (A.5)

zq(1− z)Dq+1v+
q∑

�=1

z�−1(A�z − B�)D�v+ A0v= 0; p= q+ 1; (A.6)

where A0; A�; B� are constants. Eq. (A.5) has two singular points, z = 0;∞ of which z = 0 is of
regular type, whereas Eq. (A.6) has three singular points, z=0; 1;∞ of regular type, like Eq. (A.1).
An equation of the same type as Eq. (A.6) was formerly introduced in 1883 by Goursat [7,8] in his
essay on hypergeometric functions of higher order.

Another generalization of the Gauss hypergeometric equation was previously proposed in 1870 by
Pochhammer [23]. He investigated the most general homogeneous linear di5erential equation of the
order n (n¿ 2) of Fuchsian type, namely with only “regular” singular points in {a1; a2; : : : ; an;∞}.
The Pochhammer function thus satisDes a di5erential equation of the type

*n(z)
dnw
dzn

+ · · ·*1(z)
dw
dz

+ *0w(z) = 0; (A.7)

4 If at least one of the denominator parameters bk (k=1; : : : ; q) is zero or a negative integer, Eq. (A.3) has no meaning at
all, since the denominator of the general term vanishes for a su7ciently large index. If some of the numerator parameters
are zero or negative integers, then the series terminates and turns into a hypergeometric polynomial.
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where the coe7cients *�(z) (�= 0; 1; : : : ; n) are polynomials of degree �, with *n(z) = (z − a1)(z −
a2) · · · (z − an).

The pFq functions satisfying Eqs. (A.5) and (A.6) and the Pochhammer functions satisfying
Eq. (A.7) are not the only generalizations of the Gauss hypergeometric function (A.2). In 1936,
Meijer [12] introduced a new class of transcendental functions, the so-called G functions, which
provide an interpretation of the symbol pFq when p¿q+1. Originally, the G function was deDned
in a manner resembling (A.2). Later [13], this deDnition was replaced by one in terms of Mellin–
Barnes type integrals. The latter deDnition has the advantage that it allows a greater freedom in
the relative values of p and q. Here, following [5], we shall complete Meijer’s deDnition so as to
include all values of p and q without placing any (non-trivial) restriction on m and n. One deDnes

Gm;n
p;q

[
z

∣∣∣∣∣
a1; : : : ; ap

b1; : : : ; bq

]
= Gm;n

p;q

[
z

∣∣∣∣∣
(aj)

p
1

(bj)
q
1

]
=

1
2�i

∫
L
Gm;n

p;q(s)z
s ds; (A.8)

where L is a suitably chosen path, z 
= 0, zs := exp [s(ln |z| + i arg z)] with a single valued branch
of arg z, and the integrand is deDned as follows:

Gm;n
p;q(s) =

∏m
k=1 �(bk − s)

∏n
j=1 �(1− aj + s)∏q

k=m+1 �(1− bk + s)
∏p

j=n+1 �(aj − s)
: (A.9)

In (A.9), an empty product is interpreted as 1, the integers m; n; p; q (known as orders of the G
function) are such that 06m6 q, 06 n6p, and the parameters aj and bk are such that no pole
of �(bk − s); k = 1; : : : ; m, coincides with any pole of �(1− aj + s), j = 1; : : : ; n. For the details of
the integration path, which can be of three di5erent types, we refer to [5] (see also [9] where an
illustration of what these contours can be like is found).

One can establish that the Meijer G function u(z) satisDes the linear ordinary di5erential equation
of generalized hypergeometric type, see e.g. [9, p. 316, Eq. (A.19)],

(−1)p−m−nz
p∏

j=1

(
z
d
dz

− aj + 1
)
−

q∏
k=1

(
z
d
dz

− bk

) u(z) = 0: (A.10)

For more details on the Meijer function and on the singular points of the above di5erential equation
we refer to [9]. Here, we limit ourselves to show how the generalized hypergeometric function pFq

can be expressed in terms of a Meijer G function and thus in terms of Mellin–Barnes integral. We
have

pFq((a)p; (b)q; z) =
%q

k=1 �(bk)
%p

j=1 �(aj)
G1;p

p;q+1

[
−z

∣∣∣∣∣
(1− aj)

p
1

0; (1− bk)
q
1

]
; (A.11)

G1;p
p;q+1 =

1
2�i

∫ +∞

−i∞

�(a1 + s) · · ·�(ap + s)�(−s)
�(b1 + s) · · ·�(bq + s)

(−z)s ds; (A.12)

aj 
= 0;−1;−2; : : : ; j = 1; : : : ; p; |arg(1− zi)|¡�: (A.13)
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Here, the path of integration is the imaginary axis (in the complex s-plane) which can be deformed,
if necessary, in order to separate the poles of �(aj + s), j = 1; : : : ; p from those of �(−s).
Though the G functions are quite general in nature, there still exist examples of special functions,

like the Mittag–LeQer and the Wright functions, which do not form their particular cases. A more
general class which includes those functions can be achieved by introducing the Fox H functions
[6], whose representation in terms of the Mellin–Barnes integral is a straightforward generalization
of that for the G functions. For this purpose, we need to add to the sets of the complex parameters
aj and bk the new sets of positive numbers $j and ,k with j = 1; : : : ; p, k = 1; : : : ; q, and modify in
the integral of (A.8) the kernel Gm;n

p;q(s) into

Hm;n
p;q(s) =

∏m
k=1 �(bk − ,ks)

∏n
j=1 �(1− aj + $js)∏q

k=m+1 �(1− bk + ,ks)
∏p

j=n+1 �(aj − $js)
: (A.14)

Then the Fox H function turns out to be deDned as

Hm;n
p;q (z) = Hm;n

p;q

[
z

∣∣∣∣∣
(aj; $j)j=1; :::;p

(bk ; ,k)k=1; :::; q

]
=

1
2�i

∫
L
Hm;n

p;q(s)z
s ds: (A.15)

We do not pursue furthermore in our survey: we refer the interested reader to the treatises on Fox
H functions by Mathai and Saxena [11], Srivastava et al. [26] and references therein.
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