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Abstract

The Mellin transform is usually applied in probability theory to the product
of independent random variables. In recent times the machinery of the Mellin
transform has been adopted to describe the Lévy stable distributions, and more
generally the probability distributions governed by generalized diffusion equations
of fractional order in space and/or in time. In these cases the related stochastic
processes are self-similar and are simply referred to as fractional diffusion pro-
cesses. In this note, by using the convolution properties of the Mellin transform,
we provide some (interesting) integral formulas involving the distributions of these
processes that can be interpreted in terms of subordination laws.
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1. Introduction

The role of the Mellin transform in probability theory is mainly related to
the product of independent random variables: in fact it is well-known that the
probability density of the product of two independent random variables is given
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by the Mellin convolution of the two corresponding densities. Less known is
their role with respect to the class of the Lévy stable distributions, that was
formerly outlined by Zolotarev [38] and Schneider [34], see also [36]. A general
class of probability distributions (evolving in time), that includes the Lévy strictly
stable distributions, is obtained by solving, through the machinery of the Mellin
transform, generalized diffusion equations of fractional order in space and/or in
time, see [18, 26]. In these cases the related stochastic processes turn out as
self-similar and are referred to as fractional diffusion processes.

In this note, after the essential notions and notations concerning the Mellin
transform, we first show the role of the Mellin convolution between probability
densities to establish subordination laws related to self-similar stochastic pro-
cesses. Then, for the fractional diffusion processes we establish a sort of Mellin
convolutions between the related probability densities, that can be interpreted as
subordination laws. This is carried out starting for the representations through
Mellin-Barnes integrals of the probability densities.

We point out that our results, being based on simple manipulations, can
be understood by non-specialists of transform methods and special functions;
however they could be derived through a more general analysis involving the class
of higher transcendental functions of Fox H type to which the probability densities
arising as fundamental solutions of the fractional diffusion equation belong.

2. The Mellin transform

The Mellin transform of a sufficiently well-behaved function f(x) with x ∈ IR+

is defined by

M{f(x); s} = f∗(s) =
∫ +∞

0
f(x)xs−1 dx , s ∈ IC , (2.1)

when the integral converges. Here we assume f(x) ∈ Lloc(IR+) according to the
most usual approach suitable for applied scientists. The basic properties of the
Mellin transform follow immediately from those of the bilateral Laplace transform
since the two transforms are intimately connected.

Recently the theory of the Mellin transform has been the object of intensive
researches by Professor Butzer and his associates, see e.g. [6, 7, 8, 9, 10, 11]; in
particular Butzer and Jansche [6, 7] have introduced a theory independent from
Laplace or Fourier transforms.

The integral (2.1) defines the Mellin transform in a vertical strip in the s-plane
whose boundaries are determined by the analytic structure of f(x) as x→ 0+ and
x→ +∞.

If we suppose that

f(x) =




O (x−γ1−ε) as x→ 0+ ,

O (x−γ2−ε) as x→ +∞ ,

(2.2)



MELLIN TRANSFORM AND SUBORDINATION LAWS . . . 443

for every (small) ε > 0 and γ1 < γ2, the the integral (2.1) converges absolutely
and defines an analytic function in the strip γ1 < <s < γ2 . This strip is known
as the strip of analyticity of M{f(x); s} = f∗(s)

The inversion formula for (2.1) follows directly from the corresponding inver-
sion formula for the bilateral Laplace transform. We have

M−1{f∗(s);x} = f(x) =
1

2πi

∫ γ+i∞

γ−i∞
f∗(s)x−s ds , γ1 < γ < γ2 , (2.3)

at all points x ≥ 0 where f(x) is continuous.
Let us now consider the most relevant Operational Rules. Denoting by M↔ the

juxtaposition of a function f(x) on x > 0 with its Mellin transform f∗(s) , we
have

xa f(x) M←→ f∗(s+ a) , a ∈ IC ,

f(xb) M←→ 1
|b|f

∗(s/b) , b ∈ IC , b 6= 0 ,

f(cx) M←→ c−s f∗(s) , c ∈ IR , c > 0 ,

from which

xa f(cxb) M←→ 1
|b| c

−(s+a)/b f∗
(
s+ a

b

)
. (2.4)

Furthermore we have

h(x) =
∫ ∞

0
f

(
x

ξ

)
g(ξ)

dξ

ξ

M←→ f∗(s) g∗(s) = h∗(s) , (2.5)

which is known as the Mellin convolution formula.

3. Subordination in stochastic processes via Mellin convolution

In recent years a number of papers have appeared where explicitly or implic-
itly subordinated stochastic processes have been treated in view of their relevance
in physical and financial applications, see e.g. [1, 2, 3, 30, 31, 33, 35, 36, 37]
and references therein. Historically, the notion of subordination was originated
by Bochner, see [4, 5]. In brief, according to Feller [17], a subordinated process
X(t) = Y (T (t)) is obtained by randomizing the time clock of a stochastic process
Y (τ) using a new clock T (t), where T (t) is a random process with non-negative in-
dependent increments. The resulting process Y (T (t)) is said to be subordinated
to Y (τ), called the parent process, and is directed by T (t) called the directing
process. The directing process is often referred to as the operational time. In
particular, assuming Y (τ) to be a Markov process with a spatial probability den-
sity function (pdf) of x, evolving in time τ , qτ (x) ≡ q(x; τ), and T (t) to be a



444 F. Mainardi, G. Pagnini, R. Gorenflo

process with non-negative independent increments with pdf of τ depending on a
parameter t, ut(τ) ≡ u(τ ; t), then the subordinated process X(t) = Y (T (t)) is
governed by the spatial pdf of x evolving with t, pt(x) ≡ p(x; t), given by the
integral representation

pt(x) =
∫ ∞

0
qτ (x)ut(τ) dτ . (3.1)

If the parent process Y (τ) is self-similar of the kind that its pdf qτ (x) is such that

qτ (x) ≡ q(x; τ) = τ−γ q
( x
τγ

)
, γ > 0 , (3.2)

then Eq. (3.1) reads,

pt(x) =
∫ ∞

0
qτ

( x
τγ

)
ut(τ)

dτ

τγ
. (3.3)

Herewith we show how to interpret Eq. (3.3) in terms of a special convolution
integral in the framework of the theory of the Mellin transform. Later, in the
next sections, we shall show how to use the tools of the Mellin-Barnes integral and
Mellin transform to treat the subordination for the class of self-similar stochastic
process, which are governed by fractional diffusion equations.

Let X1 and X2 be two real independent random variables with pdf ’s p1(x1)
and p2(x2) respectively, with x1 ∈ IR and x2 ∈ IR+

0 . The joint probability is

p∗(x1, x2) = p1(x1) p2(x2) . (3.4)

Denoting by X the random variable obtained by the product of X1 and Xγ
2 , i.e.

x = x1 x
γ
2 , and carrying out the transformation

{
x1 = x/τγ ,
x2 = τ ,

(3.5)

we get the identity

p̃∗(x, τ) dx dτ = p1(x/τγ) p2(τ) J dx dτ , (3.6)

where

J =

∣∣∣∣∣∣∣∣

∂x1

∂x

∂x1

∂x2

∂x2

∂x

∂x2

∂x2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣

1
τγ

− γx

τγ+1

0 1

∣∣∣∣∣∣
(3.7)

is the Jacobian of the transformation (3.5). Noting that J = 1/τγ and integrating
(3.6) in dτ we finally get the pdf of X,

p(x) =
∫

IR+

p1

( x
τγ

)
p2(τ)

dτ

τγ
, x ∈ IR . (3.8)
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For γ = 1, by comparing with Eq. (2.5), we recover the well known result that the
probability density of the product of two independent random variables is given
by the Mellin convolution of the two corresponding densities.

We now adapt Eq. (3.8) to our subordination formula (3.3) by identifying
p1, p2 with qτ and ut, respectively.

We can now interpret the subordination formula (3.3) as follows. The pdf of
the subordinated process X, pt(x), turns out to be the pdf of the product of the
independent random variables Xq and Xu

γ distributed according to qτ (xq) and
ut(xu), respectively.

4. Fractional diffusion equation and probability distributions

An interesting way to generalize the classical diffusion equation

∂2

∂x2
u(x, t) =

∂

∂t
u(x, t) , −∞ < x < +∞ , t ≥ 0 , (4.1)

is to replace in (4.1) the partial derivatives in space and time by suitable linear
integro-differential operators, to be intended as derivatives of non integer order,
that allow the corresponding Green function (see below) to be still interpreted as
a spatial probability density evolving in time with an appropriate similarity law.

The Space-Time Fractional Diffusion Equation

Recalling the approach by Mainardi, Luchko and Pagnini in [26], to which we
refer the interested reader for details, it turns out that this generalized diffusion
equation, that we call space-time fractional diffusion equation, is

xD
α
θ u(x, t) = tD

β
∗ u(x, t) , −∞ < x < +∞ , t ≥ 0 , (4.2)

where the α , θ , β are real parameters restricted as follows

0 < α ≤ 2 , |θ| ≤ min{α, 2− α} , (4.3)

0 < β ≤ 1 or 1 < β ≤ α ≤ 2 . (4.4)

Here xD
α
θ and tD

β
∗ are integro-differential operators, the Riesz-Feller space frac-

tional derivative of order α and asymmetry θ and the Caputo time fractional
derivative of order β, respectively.

The relevant cases of the space-time fractional diffusion equation (4.2) include,
in addition to the standard case of normal diffusion {α = 2, β = 1}, the limiting
case of the D’Alembert wave equation {α = 2, β = 2}, the space fractional diffusion
{0 < α < 2, β = 1}, the time fractional diffusion {α = 2, 0 < β < 2}, and the
neutral fractional diffusion {0 < α = β < 2}. When 1 < β ≤ 2 we speak more
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properly about the fractional diffusion-wave equation in that the corresponding
equation governs intermediate phenomena between diffusion and wave processes.

Let us now resume the essential definitions of the fractional derivatives in
(4.2)-(4.4) based on their Fourier and Laplace representations.

By denoting the Fourier transform of a sufficiently well-behaved (generalized)
function f(x) as f̂(κ) = F {f(x);κ} =

∫ +∞
−∞ e+iκx f(x) dx , κ ∈ IR , the Riesz-

Feller space fractional derivative of order α and skewness θ is defined as

F { xDα
θ f(x);κ} = −ψθα(κ) f̂(κ) ,

(4.5)
ψθα(κ) = |κ|α ei(signκ)θπ/2 , 0 < α ≤ 2 , |θ| ≤ min {α, 2− α} .

In other words the symbol of the pseudo-differential operator xD
α
θ is the logarithm

of the characteristic function of the generic strictly stable probability density
according to the Feller parameterization [16, 17], as revisited by Gorenflo and
Mainardi [21]. For this density we write

Lθα(x) F←→ L̂θα(κ) = exp
[
−Ψθ

α(κ)
]
, (4.6)

where α is just the stability exponent (0 < α ≤ 2) and θ is a real parameter related
to the asymmetry (|θ| ≤ min {α, 2− α}) improperly called skewness.

By denoting the Laplace transform of a sufficiently well-behaved (generalized)
function f(t) as f̃(s) = L{f(t); s} =

∫∞
0 e−st f(t) dt , < (s) > af , the Caputo

time fractional derivative of order β (m − 1 < β ≤ m, m ∈ IN) is defined
through(1)

L
{
tD

β
∗ f(t); s

}
= sβ f̃(s)−

m−1∑

k=0

sβ−1−k f (k)(0+) , m− 1 < β ≤ m. (4.7)

This leads to define, see e.g. [20, 32],

tD
β
∗ f(t) :=





1
Γ(m− β)

∫ t

0

f (m)(τ) dτ
(t− τ)β+1−m , m− 1 < β < m,

dm

dtm
f(t) , β = m.

(4.8)

(1) The reader should observe that the Caputo fractional derivative intro-
duced in [12, 13, 14] represents a sort of regularization in the time origin for
the classical Riemann-Liouville fractional derivative see e.g. [20, 32]. We note
that the Caputo fractional derivative coincides with that introduced (indepen-
dently of Caputo) by Djrbashian & Nersesian [15], which has been adopted by
Kochubei, see e.g. [23, 24] for treating initial value problems in the presence of
fractional derivatives. In [11] the authors have pointed out that such deriva-
tive was also considered by Liouville himself, but it should be noted that it
was disregarded by Liouville who did not recognize its role.
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The Green Function

When the diffusion equations (4.1), (4.2) are equipped by the initial and
boundary conditions

u(x, 0+) = ϕ(x) , u(±∞, t) = 0 , (4.9)

their solution reads u(x, t) =
∫ +∞
−∞ G(ξ, t)ϕ(x − ξ) dξ , where G(x, t) denotes the

fundamental solution (known as the Green function) corresponding to ϕ(x) =
δ(x), the Dirac generalized function. We note that when 1 < β ≤ 2 we must add
a second initial condition ut(x, 0+) = ψ(x), which implies two Green functions
corresponding to {u(x, 0+) = δ(x), ut(x, 0+) = 0} and {u(x, 0+) = 0, ut(x, 0+) =
δ(x)}. Here we restrict ourselves to consider the first Green function because only
for this it is legitimate to demand it to be a spatial probability density evolving
in time, see below.

It is straightforward to derive from (4.2) the composite Fourier-Laplace trans-
form of the Green function by taking into account the Fourier transform for the
Riesz-Feller space fractional derivative, see (4.5),, and the Laplace transform for
the Caputo time fractional derivative, see (4.7). We have, see [26]

̂̃
Gθα,β(κ, s) =

sβ−1

sβ + ψθα(κ)
. (4.10)

By using the known scaling rules for the Fourier and Laplace transforms, we infer
without inverting the two transforms,

Gθα,β(x, t) = t−γ Kθ
α,β(x/tγ) , γ = β/α , (4.11)

where the one-variable function Kθ
α,β is the reduced Green function and x/tγ is

the similarity variable. We note from
̂̃
Gθα,β(0, s) = 1/s ⇐⇒ Ĝθα,β(0, t) = 1 ,

the normalization property
∫ +∞
−∞ Gθα,β(x, t) dx =

∫ +∞
−∞ Kθ

α,β(x) dx = 1 , and, from

ψθα(κ) = ψθα(−κ) = ψ−θα (−κ) , the symmetry relation Kθ
α,β(−x) = K−θα,β(x) , al-

lowing us to restrict our attention to x ≥ 0 .
For 1 < β ≤ 2 we can show, see e.g. [28], that the second Green function is a

primitive (with respect to the variable t) of the first Green function (4.11), so that,
being no longer normalized in IR, cannot be interpreted as a spatial probability
density.

When α = 2 (θ = 0) and β = 1 the inversion of the Fourier-Laplace transform
in (4.10) is trivial: we recover the Gaussian density, evolving in time with variance
σ2 = 2t, typical of the normal diffusion,

G0
2,1(x, t) =

1
2
√
πt

exp
(−x2/(4t)

)
, x ∈ IR , t > 0 , (4.12)
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which exhibits the similarity law (4.11) with γ = 1/2.

For the analytical and computational determination of the reduced Green
function we restrict our attention to x > 0 because of the symmetry relation. In
this range Mainardi, Luchko and Pagnini [26] have provided the Mellin-Barnes(2)

integral representation

Kθ
α,β(x) =

1
αx

1
2πi

∫ γ+i∞

γ−i∞

Γ( sα) Γ(1− s
α) Γ(1− s)

Γ(1− β
αs) Γ(ρ s) Γ(1− ρ s) x

s ds , ρ =
α− θ
2α

, (4.13)

where γ is a suitable real constant.

The Space Fractional Diffusion : {0 < α < 2 , β = 1}

In this case we recover the class Lθα(x) of the strictly stable (non-Gaussian)
densities exhibiting fat tails (with the algebraic decay proportional to |x|−(α+1))
and infinite variance,

Kθ
α,1(x) = Lθα(x) =

1
αx

1
2πi

∫ γ+i∞

γ−i∞

Γ(s/α) Γ(1− s)
Γ(ρ s) Γ(1− ρs) x

s ds , ρ =
α− θ
2α

, (4.14)

where 0 < γ < min{α, 1} .
A stable pdf with extremal value of the skewness parameter is called extremal.

One can prove that all the extremal stable pdfs’ with 0 < α < 1 are one-sided, the
support being IR+

0 if θ = −α , and IR−0 if θ = +α . The one-sided stable pdf ’s with
support in IR+

0 can be better characterized by their (spatial) Laplace transform,
which turn out to be

L̃−αα (s) :=
∫ ∞

0
e−sx L−αα (x) dx = e−sα , < (s) > 0 , 0 < α < 1 . (4.15)

In terms of Mellin-Barnes integral representation we have

L−αα (x) =
1
αx

1
2πi

∫ γ+i∞

γ−i∞

Γ(s/α)
Γ(s)

xs ds , 0 < γ < α < 1 . (4.16)

(2) The names refer to the two authors, who in the first 1910’s developed
the theory of these integrals using them for a complete integration of the
hypergeometric differential equation. However, these integrals were first used
by S. Pincherle in 1888. For a revisited analysis of the pioneering work by
Pincherle (1853-1936, Professor of Mathematics at the University of Bologna
from 1880 to 1928) we refer to Mainardi and Pagnini [27].
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The Time Fractional Diffusion : {α = 2 , 0 < β < 2}

In this case, we recover the class of the Wright type densities exhibiting
stretched exponential tails and finite variance proportional to tβ ,

K0
2,β(x) =

1
2
Mβ/2(x) =

1
2x

1
2πi

∫ γ+i∞

γ−i∞

Γ(1− s)
Γ(1− βs/2)

xs ds , (4.17)

where 0 < γ < 1 . As a matter of fact, 1
2Mβ/2(x) turns out to be a symmetric

probability density related to the transcendental function Mν(z) defined for any
ν ∈ (0, 1) and ∀z ∈ IC as

Mν(z) =
∞∑

n=0

(−z)n
n! Γ[−νn+ (1− ν)]

=
1
π

∞∑

n=1

(−z)n−1

(n− 1)!
Γ(νn) sin(πνn). (4.18)

We note that Mν(z) is an entire function of order ρ = 1/(1 − ν) , that turns out
to be a special case of the Wright function(3). Restricting our attention to the
positive real axis (r ≥ 0) we have: the Laplace transform

L{Mν(r); s} = Eν(−s) , < (s) > 0 , 0 < ν < 1 , (4.19)

where Eν is the Mittag-Leffler function, and the asymptotic representation

Mν(r) ∼ A0 Y
ν−1/2 exp (−Y ) , x→∞ ,

(4.20)

A0 =
1√

2π (1− ν)ν ν2ν−1
, Y = (1− ν) (νν r)1/(1−ν) ,

a result formerly obtained by Wright himself, and, independently, by Mainardi and
Tomirotti [29] by using the saddle point method. Because of the above exponential
decay, any moment of order δ > −1 for Mν(r) is finite and given as

∫ ∞
0

r δ Mν(r) dr =
Γ(δ + 1)

Γ(νδ + 1)
, δ > −1 . (4.21)

(3) The Wright function is defined by the series representation, valid in the
whole complex plane,

Φλ,µ(z) :=
∞∑

n=0

zn

n! Γ(λn+ µ)
, λ > −1 , µ ∈ IC , z ∈ IC .

Then, Mν(z) := Φ−ν,1−ν(−z) with 0 < ν < 1 . The function Mν(z) provides a
generalization of the Gaussian and of the Airy function in that

M1/2(z) =
1√
π

exp
(− z2/4

)
, M1/3(z) = 32/3 Ai

(
z/31/3

)
.
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In particular we get the normalization property in IR+,
∫∞

0 Mν(r) dr = 1. In view
of Eqs (4.11) and (4.21)the moments (of even order) of the fundamental solution
G0

2,β(x, t) turn out to be, for n = 0, 1, 2, . . . and t ≥ 0 ,

∫ +∞

−∞
x2nG0

2,β(x, t) dx = tβn
∫ ∞

0
x2nMβ/2(x) dx =

Γ(2n+ 1)
Γ(βn+ 1)

tβn. (4.22)

We agree to call Mν(r) (ν ∈ (0, 1), r ∈ IR+
0 ) the M-Wright function of order

ν, understanding that its half represents the spatial pdf corresponding to the time
fractional diffusion equation of order 2ν. Relevant properties of this function, see
e.g. [19, 25, 26], are concerning the limit expression for β = 1, i.e. M1(r) = δ(r−1)
and its relation with the extremal stable densities, i.e.

1
c1/ν

L−νν
( r

c1/ν

)
=

c ν

rν+1
Mν

( c
rν

)
, 0 < ν < 1 , c > 0 , r > 0 . (4.23)

We note that, in both limiting cases of space fractional (α = 2) and time frac-
tional (β = 1) diffusion, we recover the Gaussian density of the normal diffusion,
for which

K0
2,1(x) =

1
2x

1
2πi

∫ γ+i∞

γ−i∞

Γ(1− s)
Γ(1− s/2)

xs ds (0 < γ < 1)

(4.24)

= L0
2(x) =

1
2
M1/2(x) =

1
2
√
π

e−x2/4 .

The Neutral Fractional Diffusion : {0 < α = β < 2}

In this case, surprisingly, the corresponding (reduced) Green function can
be expressed (in explicit form) in terms of a (non-negative) simple elementary
function, that we denote by Nθ

α(x) , as it is shown in [26]:

Nθ
α(x) =

1
αx

1
2πi

∫ γ+i∞

γ−i∞

Γ( sα) Γ(1− s
α)

Γ(ρ s) Γ(1− ρ s) x
s ds

(4.25)

=
1
π

xα−1 sin[π2 (α− θ)]
1 + 2xα cos[π2 (α− θ)] + x2α

.

The Fractional Diffusion Processes

The self-similar stochastic processes generated by the above probability densi-
ties evolving in time can be considered as generalizations of the standard diffusion
processes and therefore distinguished from it with the label ”fractional”. When
0 < β < 1 random walk models can be introduced to generalize the classical
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Brownian motion of the standard diffusion, as it was investigated in a number
of papers of our group see e.g. [21, 22]. In the case of space fractional diffu-
sion we obtain a special class of Markovian processes, called stable Lévy motions,
which exhibit infinite variance associated to the possibility of arbitrarily large
jumps (Lévy flights). In the case of time fractional diffusion, we obtain a class of
stochastic processes which are non-Markovian and exhibit a variance consistent
with slow anomalous diffusion. For the general genuine space-time fractional dif-
fusion (0 < α < 2 , 0 < β < 1), we generate a class of densities (symmetric or
non-symmetric according to θ = 0 or θ 6= 0) which exhibit fat tails with an alge-
braic decay ∝ |x|−(α+1) . Thus they belong to the domain of attraction of the Lévy
stable densities of index α and can be referred to as fractional stable densities.
The related stochastic processes possess the characteristics of the previous two
classes; indeed, they are non-Markovian (being 0 < β < 1) and exhibit infinite
variance associated to the possibility of arbitrarily large jumps (being 0 < α < 2).

5. Subordination for space fractional diffusion processes

In the book by Feller, see [17], at p. 176 we read: Let X and Y be independent
strictly stable variables, with characteristic exponent α and β respectively. Assume
Y to be a positive variable (whence β < 1). The product X Y 1/α has a stable
distribution with exponent αβ.

In other words, this statement means that any strictly stable process (of ex-
ponent γ = α · β) is subordinated to a parent strictly stable process (of exponent
α) and directed by an extremal strictly stable process (of exponent 0 < β < 1).
Feller’s proof is vague being, as a matter of fact, limited to symmetric subordi-
nated and parent stable distributions. Furthermore, the proof, scattered in several
sections, is essentially based on the use of Fourier and Laplace transforms. Here
we would like to make more precise the previous statement by Feller by considering
the possibility of asymmetry characterized by the index θ as previously explained
and making use of the Mellin machinery outlined in Sections 2 and 3, and of the
Mellin-Barnes integral representation (4.14). So, in virtue of the Mellin inversion
formula (2.3) we can write for the generic strictly stable pdf

Lθα(x) M←→ 1
α

Γ
(− s−1

α

)
Γ[1 + (s− 1)]

Γ[1 + ρ(s− 1)]Γ[−ρ(s− 1)]
, ρ =

α− θ
2α

. (5.1)

Let us now consider the evolution in time according to the space fractional diffu-
sion equation by writing

Lθα(x; t) := Gθα,1(x, t) = t−1/α Lθα

( x

t1/α

)
. (5.2)

Then we prove the following
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Theorem. Let L
θp
αp(x; t), Lθqαq(x; t) and L

θβ
β (x; t) be strictly stable densities

with exponents αp , αq , β and asymmetry parameters θp , θq , θβ, respectively, such
that

0 < αp ≤ 2 , |θp| ≤ min{αp, 2− αp} ,
0 < αq ≤ 2 , |θq| ≤ min{αq, 2− αq} ,

0 < β ≤ 1 , θβ = −β ,
then the following subordination formula holds true for 0 < x <∞ ,

L
θp
αp(x; t) =

∫ ∞
0

L
θq
αq(x; τ)L−ββ (τ ; t) dτ , with αp = βαq , θp = βθq . (5.3)

Because of the scaling property (5.2) of the stable pdf ’s, we can alternatively state

t−1/αpL
θp
αp

( x

t1/αp

)
=
∫ ∞

0
τ−1/αqL

θq
αq

( x

τ1/αq

)
t−1/βL−ββ

( τ

t1/β

)
dτ . (5.4)

The proof of Eq. (5.4) is a (straightforward) consequence of the previous
considerations. By recalling the Mellin pairs for the involved stable densities (that
can be easily obtained from Eq. (5.1)-(5.2) by adopting the correct parameters)
and the scaling properties of the Mellin transform, see (2.4), we have

t−1/αpL
θp
αp

( x

t1/αp

) M←→ t−1/αp

(
1

t1/αp

)−s 1
αp

Γ
(
− s−1

αp

)
Γ[1 + (s− 1)]

Γ[1 + ρp(s− 1)]Γ[−ρp(s− 1)]
(5.5)

and

b c xa L
θβ
β (cxb) M←→ c1− s+a

b
1
β

Γ
(
− s+a

bβ + 1
β

)
Γ
[
1 +

(
s+a
b − 1

)]

Γ
[
1 + ρβ

(
s+a
b − 1

)]
Γ
[−ρβ

(
s+a
b − 1

)] . (5.6)

After some algebra we recognize

M{t−1/αp L
θp
αp

( x

t1/αp

)
; s} =M{bxa cLθββ (cxb); s}M{Lθqαq(x); s} (5.7)

provided that

θβ = −β , a = αq − 1 , b = αq , c = t−1/β , (5.8)

and
αp = βαq , θp = βθq . (5.9)

Recalling the Mellin convolution formula (2.5) we obtain from Eqs. (5.7)-(5.9)
the integral representation

t−1/αp L
θp
αp

( x

t1/αp

)
=
∫ ∞

0
αqξ

αq−1 L
θq
αq

(
x

ξ

)
t−1/β L−ββ

(
ξαq

t1/β

)
dξ

ξ
, (5.10)
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and, by replacing ξ → τ1/αq , we finally get Eq. (5.4).
Taking into account the relationships in Eq. (5.9), we can point out some

interesting subordination laws. In particular we observe that any symmetric stable
distribution with exponent αp = α ∈ (0, 2) (θp = θ = 0) is subordinated to the
Gaussian distribution (αq = 2 , θq = 0), see L0

2(x) in (4.24), through an extremal
stable density of exponent β = α/2, that is

L0
α(x; t) =

∫ ∞
0

L0
2(x; τ)L−α/2α/2 (τ ; t) dτ , 0 < α < 2 . (5.11)

Furthermore, by recalling the generalized Cauchy density of skewness θ (|θ| < 1),
see e.g. Eq. (4.9) in [26],

Lθ1(x) =
1
π

cos(θπ/2)
[x+ sin(θπ/2)]2 + [cos(θπ/2)]2

, |θ| < 1 , −∞ < x < +∞ . (5.12)

we note that any stable distribution with exponent αp = α ∈ (0, 1) and skewness
|θp| = |θ| < α is subordinated to the generalized Cauchy distribution with skewness
|θq| = |θ|/α < 1 denoted by L

θ/α
1 (x), see (5.12), through an extremal density of

exponent β = α, that is

Lθα(x; t) =
∫ ∞

0
L
θ/α
1 (x; τ)L−αα (τ ; t) dτ . (5.13)

6. Subordination for time fractional diffusion processes

For the M-Wright function we deduce from (4.17) the Mellin transform pair:

Mν(r) M←→ Γ [1 + (s− 1)]
Γ[1 + ν(s− 1)]

, 0 < ν < 1 . (6.1)

Let us now consider the evolution in time according to the corresponding time
fractional diffusion equation by writing

Mν(x; t) := 2G0
2,2ν(x, t) = t−νMν

( x
tν

)
. (6.2)

Then we prove the following

Theorem. Let Mν(x; t), Mη(x; t) and Mβ(x; t) be M -Wright functions of
orders ν, η, β ∈ (0, 1) respectively, then the following subordination formula holds
true for 0 < x <∞,

Mν(x, t) =
∫ ∞

0
Mη(x; τ)Mβ(τ ; t) dτ , with ν = η β . (6.3)
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Because of the scaling property (6.2) of the M -Wright functions, we can al-
ternatively state

t−νMν

( x
tν

)
=
∫ ∞

0
τ−ηMη

( x
τη

)
t−βMβ

( τ
tβ

)
dτ . (6.4)

The proof of Eq. (6.4) is a (straightforward) consequence of the previous
considerations. After some algebra we recognize

M{t−νMν

( x
tν

)
; s} =M{b c xaMβ(c xb); s}M{Mη(x); s} (6.5)

provided that

a =
1
η
− 1 , b =

1
η
, c = t−ν/η , (6.6)

and
ν = β η . (6.7)

Recalling the Mellin convolution formula (2.5) we obtain from Eqs. (6.5)-(6.7)
the integral representation

t−νMν

( x
tν

)
=
∫ ∞

0

1
η
ξ1/η−1Mη

(
x

ξ

)
t−βMβ

(
ξ1/η

tβ

)
dξ

ξ
, (6.8)

and, by replacing ξ → τη, we finally get Eq. (6.4).
We note that for η = 1/2 the corresponding M -Wright function reduces to

twice the Gaussian density according to (4.24), so the subordination formula (6.3)
reads

Mβ/2(x; t) = 2
∫ ∞

0
L0

2(x; τ)Mβ(τ ; t) dτ . (6.9)

7. Subordination for space-time fractional diffusion

For the space-time fractional diffusion we shall prove two relevant subordina-
tion laws. For this purpose we first consider the evolution in time writing

Kθ
α,β(x; t) := Gθα,β(x, t) = t−β/αKθ

α,β

( x

tβ/α

)
. (7.1)

Then the required subordination laws read

Kθ
α,β(x; t) =

∫ ∞
0

Lθα(x; τ)Mβ(τ ; t) dτ , 0 < β ≤ 1 . (7.2)

and
Kθ
α,β(x; t) =

∫ ∞
0

N θ
α(x; τ)Mβ/α(τ ; t) dτ , 0 < β/α ≤ 1 . (7.3)



MELLIN TRANSFORM AND SUBORDINATION LAWS . . . 455

In order to prove the above laws we start from two relevant results in [26], see
(6.1), that we report below

Kθ
α,β(x) =





α

∫ ∞
0

[
ξα−1Mβ (ξα)

]
Lθα (x/ξ)

dξ

ξ
, 0 < β ≤ 1 ,

∫ ∞
0
Mβ/α(ξ)Nθ

α(x/ξ)
dξ

ξ
, 0 < β/α ≤ 1 .

(7.4)

In [26] the above identities have enabled us to extend the probability inter-
pretation of the Green functions to the ranges {0 < α < 2} ∩ {0 < β < 1} and
{1 < β < α < 2} . Indeed, the formulae in (7.4) show the non-negativity of the
Green functions of the genuine space-time fractional diffusion equation based on
the non-negativity of the Green functions of the particular cases of space, time
and neutral fractional diffusion. We note that the formulae were derived by using
the Mellin-Barnes representation of the corresponding Green functions, a method
akin with that of the Mellin transform as we have previously seen.

Let us now prove Eq. (7.2). Because of the scaling properties of the involved
functions this is equivalent to prove

t−β/αKθ
α,β

( x

tβ/α

)
=
∫ ∞

0
τ−1/α Lθα

( x

τ1/α

)
t−βMβ

( τ
tβ

)
dτ , 0 < β ≤ 1 , (7.5)

that can be easily achieved from the first equation of (7.4), by replacing x with
x/tβ/α and making the change of variable ξ = τ1/α/tβ/α in the integral.

Similarly, to prove Eq. (7.3) we can verify

t−β/αKθ
α,β

( x

tβ/α

)
=
∫ ∞

0
τ−1Nθ

α

(x
τ

)
t−β/αMβ/α

( τ

tβ/α

)
dτ, 0 <

β

α
≤ 1. (7.6)

In this case it suffices to replace x with x/tβ/α and set ξ = τ/tβ/α in the second
equation of (7.4).

It is worth to note that whereas for the particular cases of space and time
fractional diffusion the corresponding subordination formulas (5.3) and (6.3) in-
volve functions of the same class, here the subordination formulas (7.2) and (7.3)
involve functions of different classes. However, in all the cases we point out that
the pdf of the directing process is a M-Wright function, including (5.3) if we take
into account (4.23).

If we like to use the terminology Gθα,β(x; t) for the Green functions, the two
subordination laws (7.2)-(7.3) can be resumed as follows

Gθα,β(x; t) =





2
∫ ∞

0
Gθα,1(x; τ)G0

2,2β(τ ; t) dτ , 0 < β ≤ 1 ,

2
∫ ∞

0
Gθα,α(x; τ)G0

2,2β/α(τ ; t) dτ , 0 < β/α ≤ 1 ,
(7.7)
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From the first equation in (7.7) we note that the Green function for the space-time
fractional diffusion equation of order {α, β} , with 0 < α ≤ 2 and 0 < β ≤ 1 , can
be expressed in terms of the Green function for the space fractional diffusion equa-
tion of order α and the Green function for the time fractional diffusion equation
of order 2β .

8. Concluding discussion

There are several ways of deriving subordination formulas for fractional dif-
fusion processes. A natural way is to start from an approximating continuous
time random walk model and carry out an appropriate passage to the limit. As
we cannot give here a comprehensive survey of achievements of contributors to
this subject, let us only cite [1, 30] for a concise description. In contrast to this
”stochastic” way it was our aim to show how classes of subordination formulas
can be found by purely analytic methods, namely by exploiting solution formulas
for the fundamental solutions of the essential types of fractional diffusion equa-
tions, formulas expressing these solutions in form of Mellin-Barnes integrals (see
[26]). Using the machinery offered by Mellin transform theory these formulas can
be rewritten as integrals of products that in turn allow a probabilistic interpre-
tation as subordination formulas. So, we testify for the fact that the fascinating
field of fractional diffusion processes is not only interesting from the view-points
of probability theory and statistical physics, but also from that of pure analysis
where it is a playground for lovers of special functions and integral transforms.
In particular, we also demonstrate that the Mellin transform is an important and
useful integral transform in its own right.
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