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Abstract

The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first-order time
derivative with a fractional derivative of order b 2 (0,1). The fundamental solution for the Cauchy problem is interpreted
as a probability density of a self-similar non-Markovian stochastic process related to a phenomenon of sub-diffusion (the
variance grows in time sub-linearly). A further generalization is obtained by considering a continuous or discrete distribu-
tion of fractional time derivatives of order less than one. Then the fundamental solution is still a probability density of a
non-Markovian process that, however, is no longer self-similar but exhibits a corresponding distribution of time-scales.
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1. Introduction

The main physical purpose for adopting and investigating diffusion equations of fractional order is to
describe phenomena of anomalous diffusion usually met in transport processes through complex and/or disor-
dered systems including fractal media. In this respect, in recent years interesting reviews, see e.g. [29,31,40],
have appeared, to which (and references therein) we refer the interested reader. All the related models of
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random walk turn out to be beyond the classical Brownian motion, which is known to provide the microscopic
foundation of the standard diffusion, see e.g. [19,37]. The diffusion-like equations containing fractional
derivatives in time and/or in space are usually adopted to model phenomena of anomalous transport in phys-
ics, so a detailed study of their solutions is required.

Our attention in this paper will be focused on the time fractional diffusion equations of a single or distrib-
uted order less than 1, which are known to be models for sub-diffusive processes. Specifically, we have worked
out how to express their fundamental solutions in terms of series expansions obtained from their representa-
tions with Mellin–Barnes integrals.

In Section 2 we shall recall the main results for the fundamental solution of the time fractional diffusion
equation of a single order, which are obtained by applying two different strategies in inverting its Fourier–
Laplace transform. Both techniques yield the same power series representations of the required solution: it
turns out to be self similar (through a definite space–time scaling relationship), and expressed in terms of a
special function of the Wright type. Then, in Section 3, we shall apply the second strategy for obtaining
the fundamental solution in the general case of a distributed order. We have provided a representation in
terms of a Laplace-type integral of a Wright function, that can be expanded in a series containing powers
of the space variable and certain functions of time, responsible for the time-scale distribution. Finally, in Sec-
tion 4, the main conclusions are drawn. For convenience and self-consistency we provide an Appendix devoted
to our notations of fractional calculus.

2. The time fractional diffusion equation of single order

The standard diffusion equation in re-scaled non-dimensional variables has the form
1 Th
random
The as
of sub-
o

ot
uðx; tÞ ¼ o

2

ox2
uðx; tÞ; x 2 R; t 2 Rþ0 ; ð2:1Þ
with u(x, t) as the field variable. We assume the initial condition
uðx; 0þÞ ¼ u0ðxÞ; ð2:2Þ

where u0(x) denotes a given ordinary or generalized function defined on R, that is Fourier transformable in
ordinary or generalized sense, respectively. We assume to work in a suitable space of generalized functions
where it is possible to deal freely with delta functions, integral transforms of Fourier, Laplace and Mellin type,
and fractional integrals and derivatives.

It is well known that the fundamental solution (or Green function) of Eq. (2.1) i.e. the solution subjected to
the initial condition u(x, 0) = u0(x) = d(x), and to the decay to zero conditions for jxj ! 1, is the Gaussian
probability density function (pdf)
uðx; tÞ ¼ 1

2
ffiffiffi
p
p t�1=2e�x2=ð4tÞ; ð2:3Þ
that evolves in time with second moment growing linearly with time,
l2ðtÞ :¼
Z þ1

�1
x2uðx; tÞdx ¼ 2t; ð2:4Þ
consistently with a law of normal diffusion.1 We note the scaling property of the Green function, expressed by
the equation
uðx; tÞ ¼ t�1=2Uðx=t1=2Þ; with UðxÞ :¼ uðx; 1Þ: ð2:5Þ
e centred second moment provides the variance usually denoted by r2(t). It is a measure for the spatial spread of u(x, t) with time of a
walking particle starting at the origin x = 0, pertinent to the solution of the diffusion Eq. (2.1) with initial condition u(x, 0) = d(x).

ymptotic behaviour of the variance as t!1 is relevant to distinguish normal diffusion (r2(t)/t! c > 0) from anomalous processes
diffusion (r2(t)/t! 0) and of super-diffusion (r2(t)/t! +1).
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The function U(x) depending on the single variable x turns out to be an even function U(x) = U(jxj) and is
called the reduced Green function. The variable X :¼ x/t1/2 is known as the similarity variable. It is known that
the Cauchy problem {(2.1),(2.2)} is equivalent to the integro-differential equation
2 Th
paper.
author
Maina
proper
earlier
uðx; tÞ ¼ u0ðxÞ þ
Z t

0

o2

ox2
uðx; sÞ

� �
ds; ð2:6Þ
where the initial condition is incorporated. Now, by using the tools of the fractional calculus we can generalize
the above Cauchy problem in order to obtain the so-called time fractional diffusion equation in the two distinct
(but mathematically equivalent) forms available in the literature, where the initial condition is understood as
(2.2). For the essentials of fractional calculus we refer the interested reader to the Appendix.

If b denotes a real number such that 0 < b < 1 the two forms are as follows:
o

ot
uðx; tÞ ¼ tD1�b o2

ox2
uðx; tÞ; x 2 R; t 2 Rþ0 ; uðx; 0þÞ ¼ u0ðxÞ; ð2:7Þ
where tD
1�b = tD

1
tJ

b denotes the Riemann–Liouville (R–L) time-fractional derivative of order 1 � b, see (A.4)
with m = 1, and
tD�buðx; tÞ ¼ o2

ox2
uðx; tÞ; x 2 R; t 2 Rþ0 ; uðx; 0þÞ ¼ u0ðxÞ; ð2:8Þ
where tDb
� ¼ tJ 1�b

tD1 denotes the time-fractional derivative of order b intended in the Caputo sense, see (A.5)
with m = 1. In analogy with the standard diffusion equation we can provide an integro-differential form that
incorporates the initial condition (2.2): for this purpose we replace in (2.6) the ordinary integral with the Rie-
mann–Liouville fractional integral of order b, tJ

b, namely
uðx; tÞ ¼ u0ðxÞ þ tJb o2

ox2
uðx; tÞ

� �
: ð2:9Þ
Then, the above equations read explicitly:
o

ot
uðx; tÞ ¼ 1

CðbÞ
o

ot

Z t

0

o2

ox2
uðx; sÞ

� �
ds

ðt � sÞ1�b

( )
; uðx; 0þÞ ¼ u0ðxÞ; ð2:70Þ

1

Cð1� bÞ

Z t

0

o

os
uðx; sÞ

� �
ds

ðt � sÞb
¼ o2

ox2
uðx; tÞ; uðx; 0þÞ ¼ u0ðxÞ; ð2:80Þ

uðx; tÞ ¼ u0ðxÞ þ
1

CðbÞ

Z t

0

o2

ox2
uðx; sÞ

� �
ds

ðt � sÞ1�b : ð2:90Þ
The two Cauchy problems (2.7) and (2.8) and the integro-differential equation (2.9) are equivalent 2: for exam-
ple, we derive (2.7) from (2.9) simply differentiating both sides of (2.9), whereas we derive (2.9) from (2.8) by
fractional integration of order b. In fact, in view of the semigroup property (A.2) of the fractional integral, we
note that
tJb
tDb
�uðx; tÞ ¼ tJb

tJ 1�b
tD1uðx; tÞ ¼ tJ 1

tD1uðx; tÞ ¼ uðx; tÞ � u0ðxÞ: ð2:10Þ

In the limit b = 1 we recover the well-known diffusion Eq. (2.1).
e integro-differential equation (2.9) was investigated via Mellin transforms by Schneider and Wyss [35] in their pioneering 1989
The time fractional diffusion equation in the form (2.8) with the Caputo derivative has been preferred and investigated by several
s. From the earlier contributors let us quote Caputo himself [3], Mainardi, see e.g. [20–22] and Gorenflo et al. [16,17]. In particular,
rdi has expressed the fundamental solution in terms of a special function (of Wright type) of which he has studied the analytical
ties and provided plots also for 1 < b < 2, see also [12,13,25] and references therein. For the form (2.7) with the R–L derivative
contributors include the group of Prof. Nonnenmacher, see e.g. [28], and Saichev and Zaslavsky [33].



298 F. Mainardi et al. / Applied Mathematics and Computation 187 (2007) 295–305
Let us consider from now on the Eq. (2.8) with u0(x) = d(x): the fundamental solution can be obtained by
applying in sequence the Fourier and Laplace transforms to it. We write, for generic functions v(x) and w(t),
these transforms as follows:
FfvðxÞ; jg ¼ v̂ðjÞ :¼
Rþ1
�1 eijxvðxÞdx; j 2 R;

LfwðtÞ; sg ¼ ~wðsÞ :¼
Rþ1

0
e�stwðtÞdt; s 2 C:

ð2:11Þ
Then, in the Fourier–Laplace domain our Cauchy problem [(2.8) with u(x, 0+) = d(x)], after applying formula
(A.6) for the Laplace transform of the fractional derivative and observing d̂ðjÞ � 1, see e.g. [10], appears in the
form sb~̂uðj; sÞ � sb�1 ¼ �j2~̂uðj; sÞ, from which we obtain
~̂uðj; sÞ ¼ sb�1

sb þ j2
; 0 < b 6 1; RðsÞ > 0; j 2 R: ð2:12Þ
To determine the Green function u(x, t) in the space–time domain we can follow two alternative strategies re-
lated to the order in carrying out the inversions in (2.12).

(S1): invert the Fourier transform getting ũ(x, s) and then invert the remaining Laplace transform;
(S2): invert the Laplace transform getting û(j, t) and then invert the remaining Fourier transform.

Strategy (S1): The strategy (S1) has been applied by Mainardi [20–22] to obtain the Green function in the
form
uðx; tÞ ¼ t�b=2Uðjxj=tb=2Þ; �1 < x < þ1; t P 0; ð2:13Þ

where the variable X :¼ x/tb/2 acts as similarity variable and the function U(x) :¼ u(x, 1) denotes the reduced

Green function. Restricting from now on our attention to x P 0, the solution turns out as
UðxÞ ¼ 1

2
M b

2
ðxÞ ¼ 1

2

X1
k¼0

ð�xÞk

k!C½�bk=2þ ð1� b=2Þ�

¼ 1

2p

X1
k¼0

ð�xÞk

k!
C½ðbðk þ 1Þ=2� sin½ðpbðk þ 1Þ=2�; ð2:14Þ
where M b
2
ðxÞ is an entire transcendental function (of order 1/(1 � b/2)) of the Wright type, see also [12,13,32].

Strategy (S2): The strategy (S2) has been followed by Gorenflo et al. [11] and by Mainardi et al. [24] to
obtain the Green functions of the more general space–time fractional diffusion equations, and requires to
invert the Fourier transform by using the machinery of the Mellin convolution and the Mellin–Barnes inte-
grals. Restricting ourselves here to recall the final results, the reduced Green function for the time fractional
diffusion equation now appears, for x P 0, in the form:
UðxÞ ¼ 1

p

Z 1

0

cosðjxÞEbð�j2Þdj ¼ 1

2x
1

2pi

Z cþi1

c�i1

Cð1� sÞ
Cð1� bs=2Þ x

sds; ð2:15Þ
with 0 < c < 1, where Eb denotes the Mittag–Leffler function, see e.g. [9,23]. By evaluating the Mellin–Barnes
integrals using the residue theorem, we arrive at the same power series (2.19).

Both strategies allow us to prove that the Green function is non-negative and normalized, so it can be inter-
preted as a spatial probability density evolving in time with the similarity law (2.13). Although the two strat-
egies are equivalent for yielding the required result, the second one appears more general and so more suitable
for treating the more complex case of fractional diffusion of distributed order, see the next Section.

Of particular interest is the evolution of the second moment as it can be derived from Eq. (2.12) noting that
el2ðsÞ ¼ �
o2

oj2
~̂uðj ¼ 0; sÞ ¼ 2

sbþ1
; so l2ðtÞ ¼ 2

tb

Cðbþ 1Þ : ð2:16Þ
When 0 < b < 1 the sub-linear growth in time is consistent with an anomalous process of sub-diffusion.
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3. The time-fractional diffusion equation of distributed order

The fractional diffusion equation (2.8) can be generalized by using the notion of fractional derivative of
distributed order in time.3 We now consider the so-called time-fractional diffusion equation of distributed order
3 We
Caput
Z 1

0

bðbÞ½tDb
�uðx; tÞ�db ¼ o

2

ox2
uðx; tÞ; bðbÞP 0;

Z 1

0

bðbÞdb ¼ 1; ð3:1Þ
with x 2 R, t P 0, subjected to the initial condition u(x, 0+) = d(x). Clearly, some special conditions of regu-
larity and boundary behaviour will be required for the weight function b(b), that we call the order-density.

Equations of type (3.1) have recently been discussed in [6–8,36] and in [30]. As usual,we have considered the
initial condition u(x, 0+) = d(x) in order to keep the probability meaning. Indeed, already in the paper [6], it
was shown that the Green function is non-negative and normalized, so allowing interpretation as a density of
the probability at time t of a diffusing particle to be in the point x. The main interest of the authors in [6–8,36]
was devoted to the second moment of the Green function (the displacement variance) in order to show the
subdiffusive character of the related stochastic process by analyzing some interesting cases of the order-density
function b(b). For a thorough general study of fractional pseudo-differential equations of distributed order let
us cite the paper by Umarov and Gorenflo [39]. For a relationship with the Continuous Random Walk models
we may refer to the paper by Gorenflo and Mainardi [15].

In this paper, extending the approach by Naber [30], we provide a general representation of the fundamen-
tal solution corresponding to a generic order-density b(b). By applying in sequence the Fourier and Laplace
transforms to Eq. (3.1) in analogy with the single-order case, see Eq. (2.12), we obtain
Z 1

0

bðbÞsbdb

� �
~̂uðj; sÞ �

Z 1

0

bðbÞsb�1db ¼ �j2~̂uðj; sÞ;
from which
~̂uðj; sÞ ¼ BðsÞ=s
BðsÞ þ j2

; RðsÞ > 0; j 2 R; ð3:2Þ
where
BðsÞ ¼
Z 1

0

bðbÞsbdb: ð3:3Þ
Before trying to get the solution in the space–time domain it is worth to outline the expression of its second
moment as it can be derived from Eq. (3.2) using (2.16). We have, for j near zero,
~̂uðj; sÞ ¼ 1

s
1� j2

BðsÞ þ � � �
� �

; so fl2ðsÞ ¼ �
o

2

oj2
~̂uðj ¼ 0; sÞ ¼ 2

sBðsÞ : ð3:4Þ
Then, from (3.4) we are allowed to derive the asymptotic behaviours of l2(t) for t! 0+ and t! +1 from the
asymptotic behaviours of B(s) for s!1 and s! 0, respectively, in virtue of the Tauberian theorems. The
expected sub-linear growth with time is shown in the following special cases of b(b) treated in [6,7]. The first
case is slow diffusion (power-law growth) where
bðbÞ ¼ b1dðb� b1Þ þ b2dðb� b2Þ; 0 < b1 < b2 6 1; b1 > 0; b2 > 0; b1 þ b2 ¼ 1:
In fact
fl2ðsÞ ¼
2

b1sb1þ1 þ b2sb2þ1
; so l2ðtÞ �

2

b2Cðb2 þ 1Þ t
b2 ; t! 0;

2

b1Cðb1 þ 1Þ t
b1 ; t!1:

8>><>>: ð3:5Þ
find an earlier idea of fractional derivative of distributed order in time in the 1969 book by Caputo [3], that was later developed by
o himself, see [4,5] and by Bagley and Torvik, see [1].
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In [6], see Eq. (16), the authors were able to provide the analytical expression of l2(t) in terms of a 2-parameter
Mittag–Leffler function.

The second case is super-slow diffusion (logarithmic growth) where
bðbÞ ¼ 1; 0 6 b 6 1:
In fact �
fl2ðsÞ ¼
s� 1

log s
; so l2ðtÞ �

2t logð1=tÞ; t! 0;

2 logðtÞ; t!1:
ð3:6Þ
In [6], see Eqs. (23)–(26), the authors were able to provide the analytical expression of l2(t) in terms of an
exponential integral function.

Inverting the Laplace transform, in virtue of a theorem by Titchmarsh we obtain the remaining Fourier
transform as
ûðj; tÞ ¼ � 1

p

Z 1

0

e�rtImf~̂uðreipÞgdr; ð3:7Þ
that requires �Im{B(s)/[s(B(s) + j2]} along the ray s = reip with r > 0 (the branch cut of the functions sb and
sb�1). By writing
BðreipÞ ¼ q cosðpcÞ þ iq sinðpcÞ;
q ¼ qðrÞ ¼ jBjðreipÞj;
c ¼ cðrÞ ¼ 1

p arg½BðreipÞ�;

(
ð3:8Þ
we get after simple calculations
ûðj; tÞ ¼
Z 1

0

e�rt

r
Kðj; rÞdr; ð3:9Þ
where
Kðj; rÞ ¼ 1

p
j2q sinðpcÞ

j4 þ 2j2q cosðpcÞ þ q2
: ð3:10Þ
Since u(x, t) is symmetric in x, Fourier inversion yields
uðx; tÞ ¼ 1

p

Z þ1

0

cosðjxÞ
Z 1

0

e�rt

r
Kðj; rÞdr

� �
dj: ð3:11Þ
To calculate this Fourier integral we use the Mellin transform. Let
Mff ðnÞ; sg ¼ f �ðsÞ ¼
Z þ1

0

f ðnÞns�1dn; c1 < RðsÞ < c2; ð3:12Þ
be the Mellin transform of a sufficiently well-behaved function f(n), and let
M�1ff �ðsÞ; ng ¼ f ðnÞ ¼ 1

2pi

Z cþi1

c�i1
f �ðsÞn�sds; ð3:13Þ
be the inverse Mellin transform, where n > 0, c ¼ RðsÞ, c1 < c < c2. Denoting by$M the juxtaposition of a func-
tion f(n) with its Mellin transform f*(s), the Mellin convolution theorem implies
hðnÞ ¼ f ðnÞ � gðnÞ :¼
Z 1

0

1

g
f ðgÞgðn=gÞdg$M h�ðsÞ ¼ f �ðsÞg�ðsÞ: ð3:14Þ
Then, following [24, pp. 160–161], we identify the Fourier integral in (3.11) as a Mellin convolution in j, that is
u(x, t) = f(j, t) � g(j,x), if we set (see (3.14) with n = 1/x, g = j)
f ðj; tÞ :¼
Z 1

0

e�rt

r
Kðj; rÞdr$M f �ðs; tÞ; ð3:15Þ

gðj; xÞ :¼ 1

pxj
cos

1

j

� �
$M Cð1� sÞ

px
sin

ps
2

	 

:¼ g�ðs; xÞ; ð3:16Þ
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with 0 < RðsÞ < 1. The next step thus consists in computing the Mellin transform f*(s, t) of the function f(j, t)
and then inverting the product f*(s, t)g*(s,x) using (3.16) in the Mellin inversion formula, namely
uðx; tÞ ¼ 1

px
1

2pi

Z rþi1

r�i1
f �ðs; tÞCð1� sÞ sinðps=2Þxsds

¼ 1

x
1

2pi

Z rþi1

r�i1
f �ðs; tÞ Cð1� sÞ

Cðs=2ÞCð1� s=2Þ x
sds: ð3:17Þ
The required Mellin transform f*(s, t) is
f �ðs; tÞ ¼
Z 1

0

e�rt

r
1

p

Z 1

0

j2q sinðpcÞ
j4 þ 2q cosðpcÞj2 þ q2

js�1dj

� �
dr: ð3:18Þ
By the variable change j2! ql the term in braces becomes
qs=2þ1

2q
1

p

Z 1

0

sinðpcÞ
l2 þ 2l cosðpcÞ þ 1

lðs=2þ1Þ�1dl ¼ � qs=2

2

Cðs=2þ 1ÞC½1� ðs=2þ 1Þ�
Cðcs=2ÞCð1� cs=2Þ

� �
; ð3:19Þ
where we use a formula from the Handbook by Marichev, see [27, p. 156, Eq. 15 (1)], under the condition
0 < Rðs=2þ 1Þ < 2, jcj < 1. As a consequence of (3.18) and (3.19) we get
f �ðs; tÞ ¼ �
Z 1

0

e�rt

r
qs=2

2

Cðs=2þ 1ÞC½1� ðs=2þ 1Þ�
Cðcs=2ÞCð1� cs=2Þ

� �
dr: ð3:20Þ
Now, using Eqs. (3.17) and (3.20) we can finally write the solution as
uðx; tÞ ¼ 1

2px

Z 1

0

e�rt

r
F ðq1=2xÞdr; ð3:21Þ
where F(q1/2x) is expressed in terms of Mellin–Barnes integrals:
F ðq1=2xÞ ¼ 1

2pi

Z rþi1

r�i1

pCð1� sÞ
Cðcs=2ÞCð1� cs=2Þ ðq

1=2xÞsds ¼ 1

2pi

Z rþi1

r�i1
Cð1� sÞ sinðpcs=2Þðq1=2xÞsds; ð3:22Þ
with q = q(r), c = c(r). We remind that q(r) and c(r) are related to the order-density b(b) according to Eqs.
(3.3) and (3.8). By evaluating the Mellin–Barnes integrals via the residue theorem we arrive at the series rep-
resentations in powers of (q1/2x),
F ðq1=2xÞ ¼ pq1=2x
X1
k¼0

ð�q1=2xÞk

k!Cðck=2þ c=2ÞCð�ck=2þ 1� c=2Þ

¼ q1=2x
X1
k¼0

ð�q1=2xÞk

k!
sinðpcðk þ 1Þ=2Þ: ð3:23Þ
This function can be interpreted again in terms of generalized Wright or H-Fox functions, as outlined in [26].
From Eqs. (3.21) and (3.23), interchanging integration and summation, we get the series representation of the
fundamental solution:
uðx; tÞ ¼ 1

2p

X1
k¼0

ð�xÞk

k!
ukðtÞ; ð3:24Þ
where, with q = q(r), c = c(r),
ukðtÞ ¼
Z 1

0

e�rt

r
sin½pcðk þ 1Þ=2�qðkþ1Þ=2dr: ð3:25Þ
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In order to check the consistency of this general analysis we find it instructive to derive from Eqs. (3.24) and
(3.25) the results of Section 2 concerning the fractional subdiffusion of a single order. We denote this (fixed)
order by m in distinction from the variable b in the distributed order case. This means to consider in Eq. (3.1)
the particular case
bðbÞ ¼ dðb� mÞ; 0 < m < 1; ð3:26Þ

so that B(s) = sm and Eq. (3.8) yields
q ¼ qðrÞ ¼ rm; c ¼ constant ¼ m: ð3:27Þ

In the series representation of the fundamental solution (3.24) and (3.25) the functions uk(t) now turn out as
ukðtÞ ¼ sin½pmðk þ 1Þ=2�
Z 1

0

e�rt

r
rmðkþ1Þ=2dr ¼ sin½pmðk þ 1Þ=2�C½mðk þ 1Þ=2�

tmðkþ1Þ=2
: ð3:28Þ
As a consequence, the solution reads
uðx; tÞ ¼ 1

2
t�m=2 � 1

p

X1
k¼0

ð�x=tm=2Þk

k!
C½mðk þ 1Þ=2� sin½pmðk þ 1Þ=2� ¼ 1

2
t�m=2M m

2

x
tm=2

	 

; ð3:29Þ
in agreement with Eqs. (2.13) and (2.14). Of course, only in this special case it is possible to single out a com-
mon time factor (t�m/2) from all the functions uk(t) and get a self-similar solution. In general the set of func-
tions uk(t) gives rise to a distribution of different time scales related to the order density b(b).

4. Conclusions

After outlining the basic theory of the Cauchy problem for the spatially one-dimensional and symmetric
time fractional diffusion equation (with its main equivalent formulations), we have paid special attention to
transform methods for finding its fundamental solution or (exploiting self-similarity) the corresponding
reduced Green function. We have stressed the importance of the transforms of Fourier, Laplace and Mellin
and of the functions of Mittag–Leffler and Wright type, avoiding however the cumbersome H-Fox function
notations.

A natural first step for construction of the fundamental solution consists in applying in either succession the
transforms of Fourier in space and Laplace in time to the Cauchy problem. This yields in the Fourier-Laplace
domain the solution in explicit form, but for the space-time domain we must invert both transforms in
sequence for which there are two choices, both leading to the same power series in the spatial variable with
time-dependent coefficients. The strategy, called by us the ‘‘second’’, of first doing Laplace inversion and then
the Fourier inversion yields the reduced Green function as a Mellin–Barnes integral form which, by the cal-
culus of residues, the power series is obtained. This strategy can be adapted to the treatment of the more gen-
eral case of the distributed order time fractional diffusion equation. Now the fundamental solution can be
expressed as an integral over a Mellin–Barnes integral containing two parameters having the form of function-
als of the order-density. Finally, again for the fundamental solution a power series comes out whose coeffi-
cients, however, are time-dependent functionals of the order-density. But, if there is more than one time
derivative-order present, self-similarity is lost.

Appendix. The two fractional derivatives

For a sufficiently well-behaved function f(t) (t 2 R+) we may define the fractional derivative of order b
(m � 1 < b 6 m,m 2 N), see e.g. [14,32] in two different senses, that we refer here as to Riemann–Liouville

derivative and Caputo derivative, respectively. Both derivatives are related to the so-called Riemann–Liouville
fractional integral of order a > 0, see [34,38], defined as
tJ af ðtÞ :¼ 1

CðaÞ

Z t

0

ðt � sÞa�1f ðsÞds; a > 0: ðA:1Þ
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We note the convention tJ
0 = I (Identity) and the semigroup property
tJ a
tJb ¼ tJb

tJ a ¼ tJ aþb; a P 0; b P 0: ðA:2Þ
The fractional derivative of order b > 0 in the Riemann–Liouville sense is defined as the operator tD
b which is

the left inverse of the Riemann–Liouville integral of order b (in analogy with the ordinary derivative), that is
tDb
tJb ¼ I ; b > 0: ðA:3Þ
If m denotes the positive integer such that m � 1 < b 6 m, we recognize from Eqs. (A.2) and (A.3)

tD
bf(t) :¼ tD

m
tJ

m�bf(t), hence
tDbf ðtÞ ¼

dm

dtm

1

Cðm� bÞ

Z t

0

f ðsÞds

ðt � sÞbþ1�m

" #
; m� 1 < b < m;

dm

dtm
f ðtÞ; b ¼ m:

8>>><>>>: ðA:4Þ
For completion we define tD
0 = I. On the other hand, the fractional derivative of order b > 0 in the Caputo

sense is defined as the operator tDb
� such that tDb

�f ðtÞ :¼ tJ m�b
tDmf ðtÞ, hence
tDb
�f ðtÞ ¼

1

Cðm� bÞ

Z t

0

f ðmÞðsÞds

ðt � sÞbþ1�m ; m� 1 < b < m;

dm

dtm
f ðtÞ; b ¼ m:

8>><>>: ðA:5Þ
We point out the major utility of the Caputo fractional derivative in treating initial-value problems for phys-
ical and engineering applications where initial conditions are usually expressed in terms of integer-order deriv-
atives. This can be easily seen using the Laplace transformation, according to which
LftDb
�f ðtÞ; sg ¼ sb~f ðsÞ �

Xm�1

k¼0

sb�1�kf ðkÞð0þÞ; m� 1 < b 6 m; ðA:6Þ
where ~f ðsÞ ¼Lff ðtÞ; sg ¼
R1

0 e�stf ðtÞdt, s 2 C and f ðkÞð0þÞ :¼ limt!0þf ðkÞðtÞ.
The corresponding rule for the Riemann–Liouville derivative is more cumbersome: for m � 1 < b 6 m it

reads
LftDbf ðtÞ; s ¼ sb~f ðsÞ �
Xm�1

k¼0

½tDk
t J ðm�bÞ�f ð0þÞsm�1�k; ðA:7Þ
where, in analogy with (A.6), the limit for t! 0+ is understood to be taken after the operations of fractional
integration and derivation. As soon as all the limiting values f(k)(0+) are finite and m � 1 < b < m, the formula
(A.7) simplifies into
LftDbf ðtÞ; sg ¼ sb~f ðsÞ: ðA:8Þ

In the special case f(k)(0+) = 0 for k = 0,1,m � 1, we recover the identity between the two fractional deriva-
tives. The Laplace transform rule (A.6) was practically the starting point of Caputo [2,3] in defining his gen-
eralized derivative in the late sixties. For further reading on the theory and applications of fractional calculus
we recommend the recent treatise by Kilbas, Srivastava & Trujillo [18].
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