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1 In t roduc t ion 

By replacing in the standard diffusion equation 

9 d2 

—u(x,t) = —-u(x,t), - c o < x < + o o , i > 0 , (1.1) 

where u = u(x, t) is the (real) field variable, the second-order space derivative 
and the first-order time derivative by suitable integro-differential operators, 
which can be interpreted as a space and time derivative of fractional order, 
we obtain a sort of "generalized diffusion" equation. Such equation may be 
referred to as the space-time fractional diffusion equation when its fundamental 
solution (see below) can be interpreted as a probability density. We write 

tD^u(x,t) = xD%u(x,t), - o o < a ; < + o o , £ > 0 , (1.2) 

where the a, 8, (3 are real parameters restricted as follows 

0 < a < 2 , |0| < minja, 2 - a} , 0 < / ? < 2 . (1.3) 
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In (1.2) XD'Q is the space fractional Riesz-Feller derivative of order a and 
skewness 9, and tD* is the t ime fractional Caputo derivative of order j3. The 
definitions of these fractional derivatives are more easily understood if given 
in terms of Fourier transform and Laplace transform, respectively. 

For the space fractional Riesz-Feller derivative we have 

T{xD%f{xU) = - V £ ( K ) / ( « ) , 1>i(K) = | « r e i ( s i g n « ) ^ / 2 , (1.4) 

where K G JR and / ( K ) = :F{/( : r ) ;K} = j ^ e^lKX f(x) dx . In other words 
the symbol of the pseudo-differential operator" xDg is required to be the 
logarithm of the characteristic function of the generic stable (in the Levy sense) 
probability density, according to the Feller parameterizat ion 3 . For a = 2 
(hence 9 = 0) we have XDQ(K) = —K2 = (—iK,)2 , so we recover the s tandard 
second derivative. More generally for 0 = 0 we have XDQ(K) = — |/c|a = 
-{K2)a/2 so 

/ d2 \ a/2 

*BS = -(-zz) • (1-5) cfa;2/ 
In this case we call the LHS of (1.5) simply the Riesz fractional derivative 
operator of order a . For the explicit expressions in integral form of the general 
Riesz-Feller fractional derivative we refer the interested reader to Mainardi, 
Luchko and Pagnin i 9 . Let us now consider the time fractional Caputo deriva-
tive. Following the original idea by Caputo 1 , see also 2'6>12

; a proper t ime 
fractional derivative of order (3 € (m — 1, m] with m 6 IV , useful for physical 
applications, may be denned in terms of the following rule for the Laplace 
transform: 

m— 1 
C{tD^f(t);s} = s'3f(s)-Y/^~1-kf{k\0+), m-K(3<m, (1.6) 

fc=0 

where s € <Z and f(s) = £ { / ( * ) ; s} = f™e~st f(t) dt. Then the Caputo 
fractional derivative of f(t) tu rns out to be defined as 

tD?f(t):--
Jo ( f _ T ) g + i - m . m-l<p<m, T(m - (3) 

dm (1.7) 

"Let us recall that a generic linear pseudo-differential operator A, acting with re-
spect to the variable x £ iR, is defined through its Fourier representation, namely 
J_ etKX A[f(x)]dx = A(K) / (K) , where A(K) is referred to as symbol of A, given as 
A{K) = (Ae- i K X ) e+iKX . 
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In order to formulate and solve the Cauchy problems for (1.2) we have 
to select explicit initial conditions concerning u(x,0+) if 0 < (3 < 1 and 
u(x,0+), ut(x,0+) if 1 < /3 < 2. If <pi(x) and faix) denote two given real 
functions of x G IR, the Cauchy problems consist in finding the solution of 
(1.2) subjected to the additional conditions: 

u(x,O+) = 0i (x) , xGM, if 0 < /? < 1; (1.8a) 

("Wr^ft *e i R ' if l < / ? < 2 - (1-86) 

2 The Green functions 

The Cauchy problems can be conveniently treated by making use of the most 
common integral transforms, i.e. the Fourier transform (in space) and the 
Laplace transform (in time). Indeed, the composite Fourier-Laplace transforms 
of the solutions of the two Cauchy problems: 

(a) {(1.2) +(1.8a)} if 0 </? < 1, (b) {(1.2) + (1.86)} if 1 < p < 2 , 

turn out to be, by using (1.4) and (1.6) with m = 1,2, 

~ s / 3 - i ^ 
U(K,S)= V & ( « ) , 0 </3 < 1, (2.1a) 

By fundamental solutions (or Green functions) of the above Cauchy problems 
we mean the (generalized) solutions corresponding to the initial conditions: 

G9J'\x,0+) = S(x), 0 < / 5 < 1; (2.2a) 

» ( i ) G°a%(x,0+) = 6(x), 

9 ^e(i) [^G^(a:,0+)=0, 

1(2) « V , o + ) = o, 
„ l < / ? < 2 . (2.26) 
^ O ^ O * ) = <*(*), 

We have denoted by S(x) the delta-Dirac generalized function, whose (gener-
alized) Fourier transform is known to be 1, and we have distinguished by the 
apices (1) and (2) the two types of Green functions. From Eqs (2.1a)-(2.1b) 
the Fourier-Laplace transforms of these Green functions turn out to be 

GcS(^)=s/^i{Ky 0</?<2, j = l,2. (2.3) 
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Furthermore, by recalling the Fourier convolution property, we note that the 
Green functions allow us the represent the solutions of the above two Cauchy 
problems through the relevant integral formulas: 

/

+oo 
G9J}\U)Mx-Odti, 0</3<l ; (2.4a) 

-co 

/

+oo 
[<?(£> Wi(*-0+<(?(60&(*-£)K, l</?<2. (2.4b) 

-co 

We recognize from (2.3) that the function Ga
KJ(x,t) along with its Fourier-

Laplace transform is well defined also for 0 < (3 < 1 even if it loses its meaning 
of being a fundamental solution of (1.2), resulting 

Gi{f (*>*) = / G « ( ? (x ,T)dr , 0 < /? < 2 . (2.5) 
Jo 

By using the known scaling rules for the Fourier and Laplace transforms, and 
introducing the similarity variable xjt^la , we infer from (2.3) (thus without 
inverting the two transforms) the scaling properties of the Green functions, 

0 * . « ) =r ' /«+ ' - 1 <<« (*/«"«) , (2.6) 

where the one-variable functions KaB (x), KaS [x) are called the reduced 
Green functions. We also note the symmetry relation: 

Ge
a
{${-x,t)=G-a

e
8
{i\x,t), j = l , 2 , (2.7) 

so for the determination of the Green functions we can restrict our attention to 
x > 0 . Extending the method illustrated in4'9, where only the Green function 
of type (1) was determined, we first invert the Laplace transforms getting 

< ? $ ( « . * ) = V-1 Ep<j[-1>°a(K)t% K^p(n) = Epjl-ifcW], j = 1,2, (2.8) 

where Epj denotes the two-parameter Mittag-Leffler function6. We note the 
normalization property f_™ Ka^' (x) dx = Epj(0) = l/T(j) = 1 for j = 1,2 . 
6The Mittag-Leffler function Ept(i(z) with /3, /i > 0 is an entire transcendental function of 
order p = 1//3, defined in the complex plane by the power series 

oo 

For information on the Mittag-Leffler-type functions the reader may consult e.g.6'12. 
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Following 9 we invert the Fourier transforms of Ka
(i'(x) by using the 

convolution theorem of the Mellin transforms, arriving at the Mellin-Barnes 
integral representation0: 

^K> arc 2TTI ./7_ioo T(j-^s)T(ps)T(l-ps) 

where 0 < 7 < min{a, 1} , and p = (a - 0)/(2 a). 
We note that the Mellin-Barnes integral representation (2.9)d allows us 

to construct computationally the fundamentals solutions of Eq. (1.2) for any 
triplet {a, /?,9} by matching their convergent and asymptotic expansions, as 
shown in 9 for the first Green function. For the particular cases that allow 
simplifications in the integrand of Eq. (2.9), we obtain relevant expressions of 
the corresponding Green functions. This occurs in the following cases: 
(a) for j = 1 and {0 < a < 2, (3 = 1} (strictly space fractional diffusion) 
where we have Ka I (x) = Le

a(x), i.e. the class of the strictly stable (non-
Gaussian) densities3 exhibiting fat tails (with the algebraic decay oc Irrl-^4"1') 
and infinite variance; 
(b) for j = 1,2 and {a = 2, 0 < f3 < 2} (time fractional diffusion including 
standard diffusion), where we have K°{p(x) = M$2(x)/2 , i.e. the class of the 
Wright-type densities5'7,8'9'11 exhibiting stretched exponential tails and finite 
variance proportional to t^+J - 1 ; 
(c) for j = 1 and {0 < a = (3 < 2} (neutral fractional diffusion), where we 
have Ka;a (x) = N^(x), i.e. the class of the Cauchy-type densities9. 

Based on the arguments outlined in9, we extend the meaning of probability 
density to the cases { 0 < a < 2 , 0 < / 3 < l } and {1 < (3 < a < 2} by proving 
the following composition rules of the Mellin convolution type: 

<?(*) 
' a f V - 1 Mf (H Le

a (x/Q f , 0 < /? < 1, 
Jo L J £ 

J~M$a(t)N°(x/£)^, 0 < / 3 / a < l . 
(2.10) 

c The names refer to the two authors, who in the beginning of the past century developed 
the theory of these integrals using them for a complete integration of the hypergeometric 
differential equation. However, as revisited in 1 0 , these integrals were first introduced in 1888 
by S. Pincherle (Professor of Mathematics at the University of Bologna from 1880 to 1928). 
dReaders acquainted with Fox H functions can recognize in (2.9) the representation of a 
certain function of this class, see e.g. 1 3 . Unfortunately, as far as we know, computing 
routines for this general class of special functions are not yet available. 
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PREFACE 

This volume contains the invited lectures and contributed papers presented 
at the XI International Conference on Waves and Stability in Continuous Me-
dia (WASCOM 2001) held June 3-9, 2001, in Porto Ercole (GR), Italy. 

Ever since its initial edition organized in Catania 1981, the Conference 
aimed to bring together foreign and Italian researchers and scientists to discuss 
problems, promote collaborations and shape future directions for research in 
the field of stability and wave propagation in continuous media. 

This cycle of conferences became a fixed meeting every two years: the 
further conferences have been held in Cosenza ('83), Bari ('85), Taormina 
('87), Sorrento ('89), Acireale ('91), Bologna ('93), Palermo ('95), Monopoli 
('97) and Vulcano ('99). 

Every time the proceedings have been published, documenting the research 
work and progress in the area of waves and stability. 

From a scientific point of view the success of this experience is confirmed 
by the fact that a remarkable group of italian researchers, from many dif-
ferent universities, has proposed several national projects in the field. The 
last project, entitled "Non Linear Mathematical Problems of Wave Propaga-
tion and Stability in Models of Continuous Media", co-ordinated by Prof. T. 
Ruggeri (Bologna), is the main proposer of the present conference. 

The eleventh edition, the first of the third millennium, registered over 110 
participants coming from more than 11 different countries. The topics covered 
by 29 main lectures and 52 short communications, within 10 sessions, were 

• Discontinuity and shock waves 

• Stability in Fluid Dynamics 

• Small parameter problems 

• Kinetic theories towards continuum models 

• Non equilibrium thermodynamics 

• Numerical applications 

v 
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