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Abstract

Aphysical–mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing

derivatives of fractional order in space or/and time) and related random walk models. By space–time fractional diffusion

equationwemean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order

space derivative with a Riesz–Feller derivative of order a 2 ð0; 2� and skewness h (jhj6 minfa; 2� ag), and the first-order

time derivative with a Caputo derivative of order b 2 ð0; 1�. Such evolution equation implies for the flux a fractional Fick’s

law which accounts for spatial and temporal non-locality. The fundamental solution (for the Cauchy problem) of the

fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic

process that we view as a generalized diffusion process. By adopting appropriate finite-difference schemes of solution, we

generate models of random walk discrete in space and time suitable for simulating random variables whose spatial proba-

bility density evolves in time according to this fractional diffusion equation.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known that the fundamental solution

(or Green function) for the Cauchy problem of the

linear diffusion equation can be interpreted as a

Gaussian (normal) probability density function

(pdf) in space, evolving in time. All the moments

of this pdf are finite; in particular, its variance is

proportional to the first power of time, a note-

worthy property of the standard diffusion that can
be understood by means of an unbiased random

walk model for the Brownian motion.
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In recent years a number of master equations

have been proposed for random walk models that

turn out to be beyond the classical Brownian

motion, see e.g. [32]. In particular, evolution

equations containing fractional derivatives have

gained revived interest in that they are expected to
provide suitable mathematical models for de-

scribing phenomena of anomalous diffusion and

transport dynamics in complex systems, see e.g.

[1,10,15,28–30,34–36,40,48,49,52,57,61–64]. For a

recent review, we refer to Metzler and Klafter [41]

where other references are found.

Here, we intend to present our original approach

to the topic that, being not considered in [41], could
offer some novel and inspiring inspections to the

phenomenon of anomalous diffusion which is of

great interest in chemical physics. In this paper, we

complement and revisit some of our previous re-

sults found e.g. in [19,23,26]. We first show that our

proposed fractional diffusion equations can be de-

rived from generalized Fick’s laws which account

for spatial and/or temporal non-locality. Then we
pay attention to the fact that the fundamental so-

lutions (or Green functions) of our diffusion equa-

tions provide spatial probability densities evolving

in time, related to self-similar stochastic processes,

that we view as generalized (or fractional) diffusion

processes to be properly understood through suit-

able random walk models. More precisely, we re-

place the second-order space derivative or/and the
first-order time derivative by a suitable integro-

differential operator, which can be interpreted as a

space or time derivative of fractional order a 2
ð0; 2� or b 2 ð0; 1�, respectively. 1 The space frac-

tional derivative is required to depend also on a real

parameter h (the skewness) subjected to the re-

striction jhj6 minfa; 2� ag. Correspondingly, the
generalized equation will be referred to as the
strictly space fractional diffusion equation of order a
and skewness h if a 2 ð0; 2Þ and b ¼ 1, or the strictly

time fractional diffusion equation of order b if a ¼ 2

and b 2 ð0; 1Þ. In general, allowing a a 2 ð0; 2Þ and

b 2 ð0; 1Þ, we have the strictly space–time fractional

diffusion equation of order a; b and skewness h. Of

course, in the case fa ¼ 2; b ¼ 1g we recover the

standard diffusion which leads to the Gaussian

probability density and to the classical Brownian

motion.
For the strictly space fractional diffusion of or-

der a ðf0 < a < 2; b ¼ 1g) we generate the class of
(non-Gaussian) L�eevy stable densities of index a
and skewness h (jhj6 minfa; 2� ag), according to

the Feller parameterization. As known, these

densities exhibit fat tails with an algebraic decay

/ jxj�ðaþ1Þ
. We thus obtain a special class of

Markovian stochastic processes, called stable L�eevy
motions, which exhibit infinite variance associated

to the possibility of arbitrarily large jumps (L�eevy
flights).

For the strictly time fractional diffusion of order

b ðfa ¼ 2; 0 < b < 1gÞ we generate a class of

symmetric densities whose moments of order 2n

are proportional to the nb power of time. We thus

obtain a class of non-Markovian stochastic pro-
cesses (they possesses a memory!) which exhibit a

variance consistent with slow anomalous diffusion.

For the strictly space–time fractional diffusion of

(composite) order a 2 ð0; 2Þ; b 2 ð0; 1Þ we generate
a class of densities (symmetric or not symmetric

according to h ¼ 0 or h 6¼ 0) which exhibit fat tails

with an algebraic decay / jxj�ðaþ1Þ
. Thus they be-

long to the domain of attraction of the L�eevy stable
densities of index a and can be called fractional

stable densities. The related stochastic processes,

by possessing the characteristics of the previous

two classes, are non-Markovian and exhibit infinite

variance; however, the possibility of arbitrary

large jumps is contrasted by memory effects. Fur-

thermore, we mention the cases a ¼ b for which it

is possible to derive the Green function in closed
analytical form: we refer to these cases as to neu-

tral diffusion.

We shall prove that in any case the corre-

sponding Green function can be interpreted as a

spatial probability density evolving in time with a

self-similarity property having scaling exponent

m ¼ b=a. This allows us to limit ourselves to con-

sider the expression of the Green function at a
fixed time, say t ¼ 1, namely to the so-called re-

duced Green function. To approximate the time

1 We remind that the term ‘‘fractional’’ is a misnomer since

the order can be a real number and thus is not restricted to be

rational. The term is kept only for historical reasons, see e.g.

[22]. Our fractional derivatives are required to coincide with the

standard derivatives of integer order as soon as a ¼ 2 (not as

a ¼ 1!) and b ¼ 1.
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evolution of all the above densities we propose fi-

nite difference schemes, discrete in space and time,

for the fractional derivatives. By taking care in

constructing these schemes, namely by requiring

them to be conservative and non-negativity pre-

serving, they can be interpreted as discrete random
walk models for simulating particle paths by the

Monte Carlo technique. By properly scaled tran-

sition to vanishing space and time steps, these

models can be shown to converge to the corre-

sponding continuous processes. 2

The paper is divided as follows. In Section 2, we

first present our space and time fractional diffusion

equations providing the definitions of the space
and time fractional derivatives based on their

Fourier and Laplace representations, respectively.

Then we show how to derive them from general-

ized Fick’s laws. Section 3 is devoted to the Green

functions, pointing out their similarity properties.

We provide the representations of the corre-

sponding reduced Green functions in terms of

Mellin–Barnes integrals which allow us to obtain
their computational expressions. In Section 4, we

first discuss the discrete random walk approach to

the Brownian motion, which is based on the well-

known discretization of the second-order space

derivative and the first-order time derivative en-

tering the standard diffusion equation. Then, by

properly discretizing the space-fractional deriva-

tive we generalize the above approach to the more
general Markovian case of strictly space fractional

diffusion. Section 5 is devoted to the extension of

the above approach to the non-Markovian cases of

strictly time fractional diffusion and strictly space–

time fractional diffusion equations. Section 6 is

devoted to the numerical results of our random

walks produced in some case-studies and to the

concluding discussions. For possible convenience
of the reader we have reserved Appendices A and

B for treating with some detail the Riesz–Feller

and Caputo fractional derivatives, respectively.

2. The space–time fractional diffusion equation

By replacing in the standard diffusion equation

o

ot
uðx; tÞ ¼ o2

ox2
uðx; tÞ;

�1 < x < þ1; tP 0; ð2:1Þ

where u ¼ uðx; tÞ is the (real) field variable, the

second-order space derivative and the first-order

time derivative by suitable integro-differential op-

erators, which can be interpreted as a space and

time derivative of fractional order we obtain a

generalized diffusion equation which may be re-
ferred to as the space–time fractional diffusion

equation. We write this equation as

tDb
�uðx; tÞ ¼ xDa

huðx; tÞ;
�1 < x < þ1; tP 0; ð2:2Þ

where a; h; b are real parameters restricted to

0< a62; jhj6 minfa;2� ag; 0< b61: ð2:3Þ
In (2.2) xDa

h is the Riesz–Feller fractional derivative

(in space) of order a and skewness h, and tDb
� is the

Caputo fractional derivative (in time) of order b.
The definitions of these fractional derivatives

are more easily understood if given in terms of
Fourier and Laplace transforms, respectively.

In terms of the Fourier transform the Riesz–

Feller fractional derivative in space is defined as

FfxDa
hf ðxÞ; jg ¼ �wa

hðjÞf̂f ðjÞ;
wa

hðjÞ ¼ jjjaeiðsign jÞhp=2; ð2:4Þ

where f̂f ðjÞ ¼ Fff ðxÞ; jg ¼
Rþ1
�1 eijxf ðxÞ dx. In other

words xDa
h is a pseudo-differential operator 3 withd

xDa
hxDa
hðjÞ ¼ �wa

hðjÞ, which is the logarithm of the

characteristic function of the generic strictly stable

2 This was shown by Gorenflo and Mainardi for the space

fractional diffusion in [23–25]. For the general case it will be

shown in a next paper.

3 Let us recall that a generic pseudo-differential operator A,

acting with respect to the variable x 2 R, is defined through its

Fourier representation, namely cAfAf ðjÞ ¼ ÂAðjÞf̂f ðjÞ, where ÂAðjÞ
is referred to as the symbol of A. The nth derivative operator

xDn ¼ dn=dxn is a special case with symbol dxDn
xDnðjÞ ¼ ð�ijÞn.

Generally speaking, a pseudo-differential operator A turns out

to be defined through a kernel of a space convolution integral;

this kernel is thus a sufficiently well-behaved function (abso-

lutely) integrable in R which degenerates to a delta-type

distribution when A ¼ xDn. Furthermore, as a matter of fact,

the symbol is given by the rule ÂAðjÞ ¼ ðAe�ijxÞeþijx.
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(in the L�eevy sense) probability density, according

to the Feller parameterization [12,13].
We note that the allowed region for the pa-

rameters a and h turns out to be a diamond in the

plane fa; hg with vertices in the points ð0; 0Þ, ð1; 1Þ,
ð2; 0Þ, ð1;�1Þ, that we call the Feller–Takayasu

diamond 4, see Fig. 1.

For a ¼ 2 (henceforth h ¼ 0) we d
xD2

0ðjÞxD2
0ðjÞ ¼

�j2 ¼ ð�ijÞ2, so we recover the standard second

derivative. More generally for h ¼ 0 we havec
xDxDa

0ðjÞ ¼ �jjjaÞ ¼ �ðj2Þa=2 so

xDa
0 ¼ �

�
� d2

dx2

�a=2

¼ xD2: ð2:5Þ

In this case we refer to the LHS of (2.5) as simply

to the Riesz fractional derivative of order a. We

refer to Appendix A for the explicit expression of

the generic Riesz–Feller derivative.
Let us now consider the Caputo fractional de-

rivative in time. Following the original idea by

Caputo [3,4], see also [7,8,22,50], a proper time

fractional derivative of order b 2 ð0; 1Þ, useful for
physical applications, may be defined in terms of

the following rule for the Laplace transform:

LftDb
�f ðtÞ; sg ¼ sb ~ff ðsÞ � sb�1f ð0þÞ;

0 < b < 1; ð2:6Þ

where ~ff ðsÞ ¼ Lff ðtÞ; sg ¼
R1
0

e�stf ðtÞ dt. Then

the Caputo fractional derivative of f ðtÞ turns out to
be defined as

tDb
�f ðtÞ :¼

1
Cð1�bÞ

R t
0

f ð1ÞðsÞ
ðt�sÞb ds; 0< b < 1;

df ðtÞ
dt ; b ¼ 1:

(
ð2:7Þ

In other words the tDb
� is required to generalize the

well-known rule for the Laplace transform of the

first derivative of a given (causal) function keeping

the standard initial value of the function itself. We

refer to Appendix B for the relation of this deriv-

ative to the more common Riemann Liouville

fractional integral and derivative. Here, we report

the most relevant formula (B.6) which provides
alternative expressions for the Caputo fractional

derivative for 0 < b < 1:

tDb
�f ðtÞ ¼

1
Cð1�bÞ

d
dt

R t
0

f ðsÞ�f ð0þÞ
ðt�sÞb ds;

1
Cð1�bÞ

d
dt

R t
0

f ðsÞ
ðt�sÞb ds � f ð0þÞ t�b

Cð1�bÞ :

8<:
ð2:8Þ

It is worth to note that the time fractional de-

rivative in the LHS of Eq. (2.2) can be removed by

a suitable fractional integration, see (B.4), leading

to the alternative form

uðx; tÞ ¼ uðx; 0þÞ þ 1

CðbÞ

Z t

0
xDa

huðx; sÞ
ds

ðt � sÞ1�b :

ð2:9Þ
Differentiating with respect to time we have

another equivalent form

o

ot
uðx; tÞ ¼ 1

CðbÞ
o

ot

Z t

0
xDa

huðx; sÞ
ds

ðt � sÞ1�b

( )
:

ð2:10Þ
It is well known that in the case of standard dif-
fusion Eq. (2.1) can be derived from the continuity

equation:

o

ot
uðx; tÞ þ o

ox
F ½uðx; tÞ� ¼ 0; ð2:11Þ

where F is the flux given by

Fig. 1. The Feller–Takayasu diamond of the generic Riesz–

Feller derivative.

4 Our notation for the stable distributions has been adapted

from the original one by Feller. From 1998, see [23], we have

found it as the most convenient among the others available in

the literature, see e.g. [31,33,43,44,54,55,62,67]. Furthermore,

this notation has the advantage that all the class of the strictly

stable densities are represented. As far as we know, the diamond

representation in the plane fa; hg was formerly given by

Takayasu in his 1990 book on Fractals [59].
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F ½uðx; tÞ� ¼ � o

ox
uðx; tÞ: ð2:12Þ

Whereas Eq. (2.11) is related to a conservation law

of a physical quantity (therefore it has a universal

character), Eq. (2.12) is a phenomenological law

which states that the flux is proportional to the

gradient of the field variable (the transported

quantity) with opposite sign. It is met in several
physical contexts with different names: e.g. when u

is the temperature it is known as Fourier’s law,

when u is the pore pressure as Darcy’s law, when u

is a concentration of particles, as Fick’s law. Here,

we use the last terminology in view of the possible

applications in chemical physics. We recall that

Fick’s law is essentially an empirical law, which

represents the simplest (local in space and time)
relationship between the flux F and the gradient of

the concentration u observable in several physical

phenomena. As a matter of fact, for some exper-

imental evidences in complex transport phenom-

ena, this law can be replaced by a more suitable

phenomenological relationship which may ac-

count for possible non-local and memory effects,

without violating the conservation law expressed
by the continuity equation (2.11). Now it is not

difficult to derive our fractional diffusion equation

in the form (2.10) from a generalized Fick’s law in

which a suitable space–time operator depending

on a; h and b is acting on the gradient. After

simple manipulations based on recent results by

Paradisi et al. [48,49] and Gorenflo et al. [26], we

can write

F ðx; tÞ ¼ tD1�b
xP a

h

�
� o

ox
uðx; tÞ



; ð2:13Þ

where tD1�b denotes the Riemann–Liouville frac-

tional derivative of order 1� b (in time), see (B.1),

and xP a
h is the pseudo-differential operator with

symbol

d
xP a

hxP a
h ðjÞ :¼

d
xDa

hxDa
hðjÞd

xD2
xD2ðjÞ

¼ jjja�2
eiðsign jÞhp=2: ð2:14Þ

For a ¼ 2 and b ¼ 1 we recover the standard

Fick’s law since in this case tD0
xP 2

0 ¼ I (Identity).

For 1 < a < 2 Eq. (2.13) results to be a non-local

connection between the flux and the concentration

gradient both from temporal and spatial view

points. For the nature of the operators involved,

Eq. (2.13) can be referred to as the fractional Fick’s

law: it turns out to be consistent with the space–

time fractional diffusion equation (2.2). We note
that for 0 < a6 1 Eq. (2.13) is meaningless since

the symbol of the pseudo-differential P a
h in (2.14)

exhibits at j ¼ 0 a singularity not Fourier integ-

rable, which means that the kernel is not integrable

in R. 5 Generalized Fick’s laws with fractional de-

rivatives have also been considered by other au-

thors, including e.g. [5,6,65].

3. The Green function for the space–time fractional

diffusion

The fundamental solution (or the Green func-

tion) for the space–time fractional diffusion is in-

tended to be the solution of the governing

equation (2.2), or (2.9) or (2.10), corresponding to
the initial condition uðx; 0þÞ ¼ dðxÞ, It will be de-

noted by Gh
a;bðx; tÞ. In the case of standard diffu-

sion, see Eq. (2.1), the Green function is nothing

but the Gaussian probability density function with

variance r2 ¼ 2t, namely

G0
2;1ðx; tÞ ¼

1

2
ffiffiffi
p

p t�1=2e�x2=ð4tÞ: ð3:1Þ

In the general case, following the arguments by

Mainardi et al. [37] we can prove that Gh
a;bðx; tÞ is

still a probability density evolving in time with the

noteworthy scaling property

Gh
a;bðx; tÞ ¼ t�b=aKh

a;bðx=tb=aÞ: ð3:2Þ

5 From a purely mathematical view point one could overcome

the above trouble for 0 < a6 1 by stating the relationship

between the flux F and the concentration u as

F ðx; tÞ ¼ tD1�b
xQa

h ½uðx; tÞ�;

where xQa
h is the pseudo-differential operator with symbol

d
xQa

hxQa
hðjÞ :¼ d

xP a
h ðjÞxP a
h ðjÞdxD1

xD1 ðjÞ ¼ jjja�1
eiðsign jÞðhþ1Þp=2:

Physical reasons, however, lead us to avoid the range 0 < a6 1.

In fact, for this range, dxQa
hxQa
hðjÞ would be a decreasing (or con-

stant) function of jjj, which means that the contribution to the

flux of the larger scales would be greater than (or equal to) that

of the smaller ones, which is meaningless.
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Here, x=tb=a acts as the similarity variable and

Kh
a;bð�Þ as the reduced Green function. For the an-

alytical and computational determination of the

reduced Green function, from now on we restrict

our attention to x > 0 because of the symmetry

relation Kh
a;bð�xÞ ¼ K�h

a;bðxÞ. Mainardi et al. [37]
have provided (for x > 0) the Mellin–Barnes inte-

gral representation6

Kh
a;bðxÞ ¼

1

ax
1

2p i

Z cþi1

c�i1

CðsaÞCð1� s
aÞCð1� sÞ

Cð1� b
a sÞCðqsÞCð1� qsÞ

xs ds;

q ¼ a� h
2a

; ð3:3Þ

where 0 < c < minfa; 1g.
We recognize from the footnote6 that Eq. (3.3)

by changing s into �s can be interpreted as a

Mellin transform pair that allows us to write the

Mellin transform of xKh
a;bðxÞ asZ þ1

0

Kh
a;bðxÞxs dx¼

1

a
Cð�s=aÞCð1þ s=aÞCð1þ sÞ
Cð1þ bs=aÞCð�qsÞCð1þ qsÞ ;

�minfa;1g< RðsÞ< 0: ð3:4Þ

In order to include s ¼ 0 in the convergence strip

(so, in particular, the integral of Kh
a;bðxÞ in Rþ

0 can
be evaluated) we properly use in (3.4) the func-

tional equation Cð1þ zÞ ¼ zCðzÞ to obtainZ þ1

0

Kh
a;bðxÞxs dx¼ q

Cð1� s=aÞCð1þ s=aÞCð1þ sÞ
Cð1� qsÞCð1þ qsÞCð1þ bs=aÞ ;

�minfa;1g<RðsÞ< a: ð3:5Þ

In particular, we find
Rþ1
0

Kh
a;bðxÞ dx ¼ q (with

q ¼ 1=2 if h ¼ 0Þ.
We note that Eq. (3.5) is strictly valid as soon

as cancellations in the ‘‘gamma fraction’’ at the

RHS are not possible. Then this equation allows
us to evaluate (in Rþ

0 ) the (absolute) moments of

order d for the Green function such that

�minfa; 1g < d < a. In other words, it states that

Kh
a;bðxÞ ¼ Oðx�ðaþ1ÞÞ as x ! þ1. When cancella-

tions occur in the ‘‘gamma fraction’’ the range of

d may change. An interesting case is fa ¼ 2;
h ¼ 0; 0 < b6 1g (time-fractional diffusion in-

cluding standard diffusion), where Eq. (3.5) re-
duces toZ þ1

0

K0
2;bðxÞxs dx ¼

1

2

Cð1þ sÞ
Cð1þ bs=2Þ ;

RðsÞ > �1: ð3:6Þ

This result proves the existence of all moments

of order d > �1 for the corresponding Green

function. In virtue of (3.2), (3.6) we haveZ þ1

�1
jxjdG0

2;bðx; tÞ dx ¼
Cðd þ 1Þ

Cðbd=2þ 1Þ t
bd=2;

d > �1; 0 < b6 1; ð3:7Þ

and, for d ¼ 2, the following formula for the

variance:Z þ1

�1
x2G0

2;bðx; tÞ dx ¼
2

Cðb þ 1Þ t
b;

0 < b6 1: ð3:8Þ

We note that the Mellin–Barnes integral repre-

sentation allows us to construct computationally

the fundamental solutions of Eq. (2.1) for any

triplet fa; b; hg by matching their convergent and

asymptotic expansions, see [37,47]. Readers ac-

quainted with Fox H functions can recognize in

(3.3) the representation of a certain function of this
class, see e.g. [29,39,40,53,56–58,62]. Unfortu-

nately, as far as we know, computing routines for

this general class of special functions are not yet

available.

Let us now point out the main characteristics of

the peculiar cases of strictly space fractional diffu-

sion, strictly time fractional diffusion, and neutral

fractional diffusionbased on the results stated in [37].

6 The names refer to the two authors, who in the first 1910s

developed the theory of these integrals using them for a

complete integration of the hypergeometric differential equa-

tion. However, as pointed out in [11] (Vol. 1, Chapter 1, Section

1.19, p. 49), these integrals were first used by Pincherle in 1888.

For a revisited analysis of the pioneering work of Pincherle

(Professor of Mathematics at the University of Bologna from

1880 to 1928) we refer to the recent paper by Mainardi and

Pagnini [38]. As a matter of fact this type of integral turns out

to be useful in inverting the Mellin transform, as shown

hereafter. If

Mff ðrÞ; sg ¼ f �ðsÞ ¼
Z þ1

0

f ðrÞrs�1 dr; c1 < RðsÞ < c2

denotes the Mellin transform of a sufficiently well-behaved

function f ðrÞ, the inversion is provided by

M�1ff �ðsÞ; rg ¼ f ðrÞ ¼ 1

2p i

Z cþi1

c�i1
f �ðsÞr�s ds;

where r > 0; c ¼ RðsÞ; c1 < c < c2.
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For b ¼ 1 and 0 < a < 2 (strictly space frac-

tional diffusion) we recover the class of the strictly

stable (non-Gaussian) densities exhibiting heavy

tails (with the algebraic decay / jxj�ðaþ1Þ
) and in-

finite variance. For a ¼ 2 and 0 < b < 1 (strictly

time fractional diffusion) we recover the class of the
Wright-type densities exhibiting stretched expo-

nential tails and finite variance proportional to tb.
Mathematical details on these two classes of

probability densities can be found in [37]; for fur-

ther reading we refer to Schneider [56] for stable

densities, and to Gorenflo et al. [20,21] for the

Wright-type densities.

As for the stochastic processes governed by
these distributions we can expect the following.

For the case of non-Gaussian stable densities

we expect a special class of Markovian processes,

called stable L�eevy motions, which exhibit infinite

variance associated to the possibility of arbitrarily

large jumps (L�eevy flights), whereas for the case of

Wright-type densities we expect a class of sto-

chastic non-Markovian processes, which exhibit a
(finite) variance consistent with slow anomalous

diffusion.

For the special case a ¼ b6 1 (neutral diffusion)

we obtain from (3.3) an elementary (non-negative)

expression

Kh
a;aðxÞ ¼

1

ax
1

2p i

Z cþi1

c�i1

C s
a

� �
Cð1� s

aÞ
CðqsÞCð1� qsÞ x

s ds

¼ 1

ax
1

2p i

Z cþi1

c�i1

sinðpqsÞ
sinðps=aÞ x

s ds

¼ 1

p

xa�1 sin½p
2
ða � hÞ�

1þ 2xa cos½p
2
ða � hÞ� þ x2a

;

x > 0; ð3:9Þ

where 0 < c < a.
For the generic case of strictly space–time diffu-

sion ð0 < a < 2; 0 < b < 1Þ, including neutral dif-

fusion for a ¼ b < 1; Mainardi et al. [37] have

proven the non-negativity of the corresponding

reduced Green function and consequently its in-

terpretation as probability density. In this case we
obtain a class of probability densities (symmetric or

non-symmetric according to h ¼ 0 or h 6¼ 0), which

exhibit heavy tails with an algebraic decay

/ jxj�ðaþ1Þ
. Thus they belong to the domain of at-

traction of the L�eevy stable densities of index a and

can be referred to as fractional stable densities, ac-

cording to a terminology proposed by Uchaikin

[60]. The related stochastic processes are expected

to possess the characteristics of the previous two

classes. Indeed, they are non-Markovian being
b < 1 and exhibit infinite variance associated to the

possibility of arbitrarily large jumps (being a < 2).

4. The discrete random walk models for the

Markovian fractional diffusion

It is known that a numerical approach to the
standard diffusion equation (2.1) based on a

proper finite difference scheme provides a discrete

Markovian random walk model for the classical

Brownian motion, see e.g. [66].

In this section we intend to generalize this ap-

proach (that will be hereafter recalled) in order to

provide a discrete Markovian random walk model

for the L�eevy stable motion of any order a 2 ð0; 2Þ
and skewness h restricted as in (2.3). For this

purpose we present a notable finite-difference ap-

proach to the strictly space fractional diffusion

equation subjected to relevant restrictions, as we

shall show in the following.

The common starting point of our analysis is

obviously the discretization of the space–time do-

main by grid points and time instants as follows:

xj ¼ jh; h > 0; j ¼ 0;�1;�2; . . . ;
tn ¼ ns; s > 0; n ¼ 0; 1; 2; . . . ;

�
ð4:1Þ

where the steps h and s are assumed to be small

enough. The dependent variable u is then discret-

ized by introducing yjðtnÞ as

yjðtnÞ �
Z xjþh=2

xj�h=2
uðx; tnÞ dx � h uðxj; tnÞ: ð4:2Þ

4.1. The discrete random walk model for the

standard diffusion

Let us now consider the standard diffusion

equation (2.1). With the quantities yjðtnÞ so in-

tended, we replace Eq. (2.1), after multiplication

by the spatial mesh-width h, by the finite-difference

equation
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yjðtnþ1Þ � yjðtnÞ
s

¼ yjþ1ðtnÞ � 2yjðtnÞ þ yj�1ðtnÞ
h2

ð4:3Þ

accepting that for positive n in (4.3) we have ap-
proximate instead of exact equality. Since we are

interested to approximate the fundamental solu-

tion (the Green function), we must equip (4.3) with

the initial condition yjð0Þ ¼ dj0, where the Kro-

necker symbol represents the discrete counterpart

of the Dirac delta function.

This approach can be interpreted as a discrete

(in space and time) redistribution process of some
extensive quantity provided it is conservative. If

the extensive quantity is non-negative, e.g. mass or

a sojourn probability, we have to preserve its non-

negativity. In the first case, the yjðtnÞ are imagined

as clumps of mass, sitting at grid points x ¼ xj in
instants t ¼ tn, which collect approximatively the

total mass in the interval xj � h=2 < x6 xj þ h=2.
In the second case, the yjðtnÞ may be interpreted as
the probability of sojourn in point xj at time tn for
a particle making a random walk on the spatial grid

in discrete instants. From now on, we agree to

pursue the probabilistic point of view.

In order to have a conservative and non-nega-

tivity preserving redistribution process, the discrete

variable yj is subjected to the conditionsXþ1

j¼�1
yjðtnÞ ¼

Xþ1

j¼�1
yjð0Þ; yjðtnÞP 0

for all j 2 Z; n 2 N0: ð4:4Þ

We easily recognize that our discrete redistribution

process is akin to a Markov chain: when time pro-

ceeds from t ¼ tn to t ¼ tnþ1, the sojourn-probabil-

ities are redistributed according to the transition law

yjðtnþ1Þ ¼
X1
k¼�1

pkyj�kðtnÞ; j 2 Z; n 2 N0; ð4:5Þ

where the pk denote suitable transfer coefficients,

which represent the probability of transition from

xj�k to xj (likewise from xj to xjþk). The transfer
coefficients are to be found consistently with the

finite-difference equation (4.3) equipped with the

proper initial condition. The process turns out to

be both spatially homogeneous (the probability pk
of jumping from a point xj to a point xjþk not

depending on j) and time-stationary (the pk not

depending on n), as is advised when considering

our Cauchy problem and the definition of the

difference operators. Furthermore, the transfer

coefficients must satisfy the conditionsX1
k¼�1

pk ¼ 1; pk P 0; k ¼ 0;�1;�2; . . . ð4:6Þ

The transfer coefficients in our special case are

easily deduced from (4.3) and (4.5): they turn out

to be

p0 ¼ 1� 2
s
h2

; p�1 ¼
s
h2

; p�k ¼ 0; k ¼ 2; 3; . . .

ð4:7Þ
subject to the condition

0 < l :¼ s
h2

6 lmax ¼
1

2
: ð4:8Þ

We refer to Eqs. (4.6)–(4.8) as the basic equa-
tions for the standard random walk model for the

Gaussian process. The constant lwill be denoted as

the scaling parameter of the standard diffusion

equation. We recognize that only jumps of one step

to the right or to the left or jumps of width zero

occur. This corresponds to a well-known simple

approximate realization of the Brownian motion.

The finite difference scheme (4.3) can be used
for producing sample paths of individual particles

performing the Brownian motion and for pro-

ducing histograms of the approximate realization

of the Gaussian density, by simulating many in-

dividual paths with the same number of time steps

and making statistics of the final positions of the

particles.

Our simulations, based on 10,000 realizations,
have been limited to the interval jxj6 5, where we

have considered the random walks to take place,

have produced an histogram for the Gaussian

density at t ¼ 1, see Fig. 2 (left plate). Then, par-

ticles leaving this space have been ignored. In Fig.

2 (right plate) we have displayed a particular

sample path or trajectory (up) and the corre-

sponding increment series (below) obtained with
N ¼ 500 time steps, by taking an intermediate

value for the scaling factor (l ¼ 0:4 < 1=2) and

reasonable values for the space and time steps

(h ¼ 0:0707; s ¼ 0:002) in order to get Ns ¼ t ¼ 1.

Of course the histogram has been depicted by
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adopting a space step much larger than for the

sample path, namely h ¼ 0:25:

4.2. A discrete random walk model for the strictly

space fractional diffusion

Discretizing all the variables as done for the

standard diffusion equation, namely introducing a

space–time mesh of widths h and s and a discrete

variable yjðtnÞ interpreted as in (4.2), the essential

idea is to replace the strictly space fractional dif-

fusion equation by the finite-difference equation

yjðtnþ1 � yjðtnÞ
s

¼ hDa
hyjðtnÞ;

0 < a < 2; jhj6 minfa; 2� ag ð4:9Þ

where the difference operator hDa
h is intended to

converge toDa
h (discussed in Appendix A) as h ! 0.

As usual, we have adopted a forward difference

quotient in time at level t ¼ tn for approximating

the first-order time derivative. For hDa
h we require a

scheme which must reduce as a ¼ 2 to a symmetric

second-order difference quotient in space at level

t ¼ tn, which has been adopted for approximating

the second-order space derivative. Furthermore,

the finite-difference equation (4.9) is required to be

consistent with a conservative, non-negativity pre-

serving redistribution process, subject to the initial

condition yjð0Þ ¼ dj0. Referring to Eqs. (A.4), (A.8)
and (A.10), (A.11), we write

hDa
hyjðtnÞ ¼

� cþða;hÞhDa
þ þ c�ða;hÞhDa

�
� �

yjðtnÞ;
a 6¼ 1;
cosðhp=2ÞhD1

0 þ sinðhp=2ÞhD�
� �

yjðtnÞ;
a ¼ 1:

8>><>>:
ð4:10Þ

With the notation hD� we intend to adopt hDþ
when 0 < h6 1 and hD� when �16 h < 0.

We thus must find suitable finite-difference

schemes for the pseudo-differential operators en-

tering the Feller derivative, namely hDa
� (Weyl

fractional derivatives of order a) if a 6¼ 1 and hD1
0

(Riesz derivative of first-order) if a ¼ 1. For this

purpose we must keep distinct the three cases

ðaÞ 0 < a < 1; jhj6 a;
ðbÞ 1 < a < 2; jhj6 2� a;
ðcÞ a ¼ 1; jhj6 1:

8<: ð4:11Þ

For a 6¼ 1 the starting point is the Gr€uunwald–
Letnikov discretization of fractional derivatives, on

which the reader can inform himself from the

treatises on fractional calculus, see e.g. [42,46,

50,53], or in the review paper by Gorenflo [18].
However, for our purposes, we must make a clever

use of the Gr€uunwald–Letnikov scheme treating

separately the two cases (a) and (b) in order to be

consistent with a conservative, non-negativity pre-

serving redistribution process. We have

hDa
�yj ¼

1
ha

P1
k¼0 ð�1Þk a

k

� �
yj�k

in the case ðaÞ 0 < a < 1;

1
ha

P1
k¼0 ð�1Þk a

k

� �
yj�1�k

in the case ðbÞ 1 < a < 2:

8>>>>>><>>>>>>:
ð4:12Þ

Notice the shift of index in the case (b) which

among other things has the effect that in the limiting

case a ¼ 2 (the classical diffusion equation) we

obtain the standard symmetric three-point differ-

ence scheme. For more details and discussions, see
[23].

Fig. 2. Histogram (left) and a sample path with increments (right) for standard diffusion fa ¼ 2;b ¼ 1; h ¼ 0g (Brownian motion).
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For a ¼ 1 we limit ourselves to consider the

case h ¼ 0 that requires the discretization of the

Hilbert transform in (A.11). The hyper-singular

integral representation of the symmetric space-

fractional derivative (the ‘‘Riesz derivative’’) given

by Gorenflo and Mainardi in [25] [as formula
(2.20)] readily offers us the discretization

hD1
0yj ¼

1

ph

X1
k¼1

yjþk � 2yj þ yj�k

kðk þ 1Þ : ð4:13Þ

For 0 < jhj6 1 we have analogously to (A.10) to

take into account the forward/backward difference

quotients for hD�,

hDþ ¼ yjþ1 � yj
h

; hD� ¼ yj � yj�1

h
; ð4:14Þ

to obtain a non-negative scheme in a proper way.

However, we here leave out these ‘‘drifts’’ (in

negative or positive directions) from the compu-

tation of the transfer coefficients pk.
Then, inserting the expressions (4.12), (4.13) in

the finite-difference equation (4.9), (4.10) yields the

transition law

yjðtnþ1Þ ¼
X1
k¼�1

pkyj�kðtnÞ; j 2 Z; n 2 N0;

ð4:15Þ
where the transfer coefficients pk turn out to be,

respectively,

p0 ¼ 1� lðcþ þ c�Þ ¼ 1� l cosðhp=2Þ
cosðap=2Þ ;

p�k ¼ ð�1Þkþ1l
a

k

 !
c�; k ¼ 1; 2; . . . ;

8>><>>:
0 < a < 1; jhj6 a; ð4:16aÞ

p0 ¼ 1þ l
a

1

� �
ðcþ þ c�Þ ¼ 1� la cosðhp=2Þ

j cosðap=2Þj ;

p�1 ¼ �l
a

2

� �
c� þ c�

� 

;

1 < a < 2; jhj6 2� a;

p�k ¼ ð�1Þkl
a

k þ 1

� �
c�; k ¼ 2; 3; . . . ;

8>>>>>>>>>>><>>>>>>>>>>>:
ð4:16bÞ

p0 ¼ 1� 2l
p ;

p�k ¼ l
p

1
kðkþ1Þ ; k ¼ 1; 2; . . . ;

(
a ¼ 1; h ¼ 0;

ð4:16cÞ
with the scale parameter

l :¼ s
ha

; 0 < a < 2: ð4:17Þ

It is straightforward to check in all cases the

summation condition
P1

k¼�1 pk ¼ 1 Since all

p�k P 0, k 6¼ 0 the non-negativity condition is met

if we require p0 P 0, i.e. if the scale parameter l is

restricted as follows:

0 < l :¼ s
ha

6 lmax

¼

cos ap=2
cos hp=2 ; 0 < a < 1; jhj6 a;
1
a

j cos ap=2j
cos hp=2 ; 1 < a < 2; jhj6 2� a;

p
2
; a ¼ 1; h ¼ 0:

8><>: ð4:18Þ

We note that in both the limits a ! 1� and

a ! 1þ the permissible range of the scaling factor

l is vanishing. In numerical practice the conse-

quence will be that if a is near 1 the convergence is

slow: for good approximation we will need a very
small step-time s with respect to the step-length

h. 7

The striking difference to our discretzed Brown-

ian motion is the appearance of arbitrarily large

jumps with power-like decay probability for which

these discrete models are referred to as L�eevy flights.
See Fig. 3 for a sketch of the transition scheme and

Section 5 for the numerical results.

5. The discrete random walk models for the non-

Markovian fractional diffusion

Let us now try to generalize the above argu-

ments by adapting them to the non-Markovian

cases of our space–time fractional diffusion equa-

7 In order to get a continuous transition to the case a ¼ 1 we

need to consider a different discretization scheme, presented in

[19] for the first time and rigorously analyzed in [25]. For this

scheme, however, we loose the continuity as a ! 2�. This

means that ‘‘there is no free lunch’’; we have to pay for the good

behaviour at a ¼ 1 with bad behaviour at a ¼ 2 in a sense

described in [19].
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tion (2.2). We find it convenient to proceed by

steps: we first consider the case of the strictly time

fractional diffusion, see also [26], and then, by

combining these arguments with those for strictly
space fractional diffusion, we treat the strictly

space–time fractional diffusion.

5.1. A discrete random walk model for the strictly

time fractional diffusion

Discretizing all the variables as for the standard

diffusion equation, namely introducing a space–
time mesh of widths h and s and a discrete variable

yjðtnÞ interpreted as in (4.2), the essential idea is to

replace the strictly time fractional diffusion equa-

tion by the finite-difference equation

sDb
�yjðtnþ1Þ ¼

yjþ1ðtnÞ � 2yjðtnÞ þ yj�1ðtnÞ
h2

;

0 < b < 1; ð5:1Þ

where the difference operator sDb
� is intended to

converge toDb
� as s ! 0. As usual, we have adopted

a symmetric second-order difference quotient in

space at level t ¼ tn for approximating the second-

order space derivative. For sDb
� we require a scheme

which must reduce as b ¼ 1 to a forward difference

quotient in time at level t ¼ tn, which is usually

adopted for approximating the first-order time de-

rivative. Then, for approximating the time frac-
tional derivative (in Caputo’s sense), we adopt a

backward Gr€uunwald–Letnikov scheme in time

(starting at level t ¼ tnþ1) which reads

sDb
�yjðtnþ1Þ ¼

Xnþ1

k¼0

ð�1Þk
b

k

� �
yjðtnþ1�kÞ � yjð0Þ

sb
;

0 < b < 1: ð5:2Þ

Here, the subtraction of yjð0Þ in each term of the

sum reflects the subtraction of f ð0þÞ in formula

(B.6) for the Caputo fractional derivative. Com-

bining (5.1) and (5.2), introducing the scaling pa-

rameter

l :¼ sb

h2
; 0 < b6 1: ð5:3Þ

and using the ‘‘empty sum’’ convention
Pq

k¼p ¼ 0

if q < p (here p ¼ 1 when q ¼ n ¼ 0), we obtain for

nP 0 ðt0 ¼ 0Þ:

yjðtnþ1Þ ¼ yjðt0Þ
Xn
k¼0

ð�1Þk
b

k

� �
þ
Xn
k¼1

ð�1Þkþ1 b

k

� �
yjðtnþ1�kÞ

þ l½yjþ1ðtnÞ � 2yjðtnÞ þ yj�1ðtnÞ�: ð5:4Þ

Thus, (5.4) provides the universal transition law

from tn to tnþ1 valid for all nP 0. For convenience

let us introduce the coefficients ck; bm

Fig. 3. Sketch of the transition scheme for the space-fractional random walker.
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ck ¼ ð�1Þkþ1 b

k

� �
¼

b

k

� ����� ����; k P 1;

bm ¼
Pm

k¼0 ð�1Þk
b

k

� �
; mP 0:

8>>><>>>: ð5:5Þ

For b ¼ 1 (standard diffusion) we note that all

these coefficients are vanishing except b0 ¼ c1 ¼ 1.

For 0 < b < 1 they possess the propertiesX1
k¼1

ck ¼ 1; 1 > b ¼ c1 > c2 > c3 > � � � ! 0;

ð5:6Þ

b0 ¼ 1¼
P1

k¼1 ck; bm ¼ 1�
Pm

k¼1 ck ¼
P1

k¼mþ1 ck;
1¼ b0 > b1 > b2 > b3 > � � � ! 0:

�
ð5:7Þ

We thus observe that the ck and the bm form

sequences of positive numbers, not greater than 1,

decreasing strictly monotonically to zero. Thanks

to the introduction of the above coefficients the

universal transition law (5.4) can be written in the

following noteworthy form:

yjðtnþ1Þ ¼ bnyjðt0Þ þ
Xn
k¼1

ckyjðtnþ1�kÞ

¼ l½yjþ1ðtnÞ � 2yjðtnÞ þ yj�1ðtnÞ�; ð5:8Þ

with the empty sum convention if n ¼ 0. In par-

ticular, we get, for n ¼ 0:

yjðt1Þ ¼ ð1� 2lÞyjðt0Þ þ l½yjþ1ðt0Þ þ yj�1ðt0Þ�;

for n ¼ 1:

yjðt2Þ ¼ b1yjðt0Þ þ ðc1 � 2lÞyjðt1Þ
þ l½yjþ1ðt1Þ þ yj�1ðt1Þ�;

for nP 2:

yjðtnþ1Þ ¼ bnyjðt0Þ þ
Xn
k¼2

ckyjðtnþ1�kÞ þ ðc1 � 2lÞyj

�ðtnÞ þ l½yjþ1ðtnÞ þ yj�1ðtnÞ�:

Observe that c1 ¼ b. Scheme (5.8) preserves non-

negativity, if all coefficients are non-negative,

hence if

0 < l ¼ sb

h2
6

b
2
: ð5:9Þ

Furthermore it is conservative, as we shall prove

by induction, i.e.Xþ1

j¼�1
jyjðt0Þj < 1 )

Xþ1

j¼�1
yjðtnÞ

¼
Xþ1

j¼�1
yjðt0Þ; n 2 N: ð5:10Þ

In fact, putting Sn ¼
Pþ1

j¼�1 yjðtnÞ for nP 0, then

from (5.8) we get

S1 ¼ ð1� 2lÞ
X

yjðt0Þ þ l
X

yj�1ðt0Þ
þ l

X
yjþ1ðt0Þ

¼ S0;

and for nP 1 we find always from (5.8), assuming

S0 ¼ S1 ¼ � � � Sn already proved,

Snþ1 ¼ bnS0 þ
Xn
k¼2

ckSnþ1�k þ ðb � 2l þ l þ lÞSn

¼ bn

 
þ
Xn
k¼1

ck

!
S0 ¼ S0;

using b ¼ c1. We have thus proved conservativity.

Non-negativity preservation and conservativity

mean that our scheme can be interpreted as a

redistribution scheme of clumps yjðtnÞ. For orien-

tation on such aspects and for examples let us

quote the works by Gorenflo on conservative
difference schemes for diffusion problems, see e.g.

[16,17].

The interpretation of our redistribution scheme

is as follows: the clump yjðtnþ1Þ arises as a

weighted-memory average of the (previous) nþ 1

values yjðtmÞ, with m ¼ n; n� 1; . . . ; 1; 0; with pos-

itive weights

b ¼ c1; c2; . . . ; cn; bn ¼ 1�
Xn
k¼1

ck; ð5:11Þ

followed by subtraction of 2lyjðtnÞ, which is

given in equal parts to the neighbouring points

xj�1 and xjþ1 but replaced by the contribution

l½yjþ1ðtnÞ þ yj�1ðtnÞ� from these neighbouring

points. For random walk interpretation we con-

sider the yjðtnÞ as probabilities of sojourn at
point xj in instant tn requiring the normalization

condition
Pþ1

j¼�1 yjðt0Þ ¼ 1.
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For n ¼ 0, Eq. (5.8) means (by appropriate re-

interpretation of the spatial index j): A particle

sitting at xj in instant t0 jumps, when t proceeds

from t0 to t1, with probability l to the neighbour

point xjþ1, with probability l to the neighbour

point xj�1, and with probability 1� 2l it remains

at xj. For nP 1, we write (5.8), using b ¼ c1, as
follows:

yjðtnþ1Þ ¼ 1

 
�
Xn
k¼1

ck

!
yjðt0Þ þ cnyjðt1Þ

þ cn�1yjðt2Þ þ � � � þ c2yjðtn�1Þ
þ ðc1 � 2lÞyjðtnÞ
þ l½yjþ1ðtnÞ þ yj�1ðtnÞ�: ð5:12Þ

Obviously, all coefficients (probabilities) are non

negative, and their sum is 1. But what does it mean?
Having a particle, sitting in xj at instant tn, where
will we find it with which probability at instant tnþ1?

From (5.12) we conclude, by re-interpretation of

the spatial index j, considering the whole history of

the particle, i.e. the particle path fxðt0Þ; xðt1Þ;
xðt2Þ; . . . ; xðtnÞg, that if at instant tn it is in point xj,
there is the contribution c1 � 2l to be again at xj at
instant tnþ1, the contribution l to go to xj�1, the
contribution l to go to xjþ1. But the sum of these

contributions is c1 ¼ b6 1. So, excluding the case

b ¼ 1 in which we recover the standard diffusion

(Markovian process), for b < 1 we have to consider

the previous time levels (non-Markovian process).

Then, from level tn�1 we get the contribution c2 for
the probability of staying in xj also at time tnþ1,

from level tn�2 we get the contribution c3 for the

probability of staying in xj at time tnþ1; . . . ; from
level t1 we get the contribution cn for the probability
of staying in xj at time tnþ1, and finally, from level
t0 ¼ 0 we get the contribution bn for the probability
of staying in xj at time tnþ1. Thus, the whole history

up to tn decides probabilistically where the particle

will be at instant tnþ1.

Let us consider the problem of simulation of

transition from time level tn to tnþ1: Assume the

particle sitting in xj at instant tn. Generate a ran-

dom number equidistributed in 06 q < 1, and
subdivide the interval [0,1) as follows. From left to

right beginning at zero we put adjacent intervals of

length c1; c2; . . . ; cn; bn, for consistency left-closed,

right-open. The sum of these is 1. We divide fur-

ther the first interval (of length c1) into sub-inter-

vals of length l; c1 � 2l; l. Then we look into

which of the above intervals the random number

falls. If in first interval with length c1 ¼ l þ
ðc1 � 2lÞ þ l, then look in which subinterval, and

correspondingly move the particle to xj�1, or leave

it at xj or move to xjþ1. If the random number falls

into one of the intervals with length c2; c3; . . . ; cn
(i.e. ck with 26 k6 n), then move the particle back

to its previous position xðtnþ1�kÞ, which by chance

could be identical with xj ¼ xðtnÞ. If the random

Fig. 4. Sketch of the transition scheme for the time-fractional random walker.
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number falls into the rightmost interval with

length bn then move the particle back to its initial

position xðt0Þ, for which we recommend xðt0Þ ¼ 0,

meaning yjðt0Þ ¼ dj0, in accordance with the initial

condition uðx; 0Þ ¼ dðxÞ for (2.2) with a ¼ 2; h ¼ 0.

A sketch of the transition scheme for the ran-
dom walker is reported in Fig. 4. Besides the dif-

fusive part (l; c1 � 2l; l) which lets the particle

jump at most to neighbouring points, we have for

0 < b < 1 the memory part which gives a tendency

to return to former positions even if they are far

away. Due to Eqs. (5.6) and (5.7), of course, the

probability to return to a far away point gets

smaller and smaller the larger the time lapse is
from the instant when the particle was there.

5.2. A discrete random walk model for the strictly

space–time fractional diffusion

By combining the approach of the preceding

Sections 3 and 4.1 we can construct a discrete ran-

dom walk model for the strictly space–time frac-

tional diffusion equation, namely for the case

f0 < a < 2; 0 < b < 1g. We replace in (2.2) the

(Riesz–Feller) space-fractional derivative by (4.10)

and the (Caputo) time-fractional derivative by (5.2).

Solving then for the ‘‘new’’ value yjðtnþ1Þwe see that
the scaling parameter l ¼ sb=ha plays the essential

role in obtaining a scheme with all transition coef-

ficients non-negative. In fact, also here l must be

restricted to a suitable interval (0; lmax]. In analogy

to the case of the strictly time fractional diffusion the

‘‘discrete’’ diffusion in space occurs only between

the time-level tn and tnþ1 and the memory part of the

process only straight-backwards in time. However,
in contrast to the strictly time fractional diffusion,

the discrete diffusion (or the random walker) can

now go to any grid point in space, not only to im-

mediate neighbouring grid points. We abstain from

presenting here all the lengthy formulas that again

need distinction between the three cases: (a)

0 < a < 1, (b) 1 < a < 2, and (c) a ¼ 1.

Fig. 5. Histogram (left) and a sample path with increments (right) for strictly space fractional diffusion fa ¼ 1:75;b ¼ 1; h ¼ 0g.

Fig. 6. Histogram (left) and a sample path with increments (right) for strictly space fractional diffusion fa ¼ 1:75;b ¼ 1; h ¼ �0:25g.
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Fig. 9. Histogram (left) and a sample path with increments (right) for strictly fractional diffusion fa ¼ 2;b ¼ 0:75; h ¼ 0g.

Fig. 10. Histogram (left) and a sample path with increments (right) for strictly space fractional diffusion fa ¼ 2; b ¼ 0:50; h ¼ 0g.

Fig. 7. Histogram (left) and a sample path with increments (right) for strictly space fractional diffusion fa ¼ 1:50; b ¼ 1; h ¼ 0g.

Fig. 8. Histogram (left) and a sample path with increments (right) for strictly space fractional diffusion fa ¼ 1:50; b ¼ 1; h ¼ �0:50g.
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6. Numerical results and concluding discussions

Our simulations are all based on 10,000 real-

izations. In addition to the Brownian motion, see

Fig. 2, we have considered a set of eight case-

studies, see Figs. 5–12, for our space–time frac-

tional diffusion that, in our opinion, can better

illustrate the state-of-art of this analysis. The
sample paths and the corresponding increments

are plotted against the time steps up to 500, see the

right figure-plates, while the histograms refer to

densities at t ¼ 1 for jxj6 5, see the left figure-

plates. All the plots were drown by using the

MATLAB system. The relevant parameters

Fig. 11. Histogram (left) and a sample path with increments (right) for strictly space–time fractional diffusion fa ¼ 1:50;b ¼ 0:50;

h ¼ 0g.

Fig. 12. Histogram (left) and a sample path with increments (right) for strictly space–time fractional diffusion fa ¼ 1:50;b ¼ 0:50;

h ¼ �0:50g.

Table 1

The relevant parameters for the simulations

a h b lmax hS sS hH sH

2 0 1 0.50 7:0� 10�2 2:0� 10�3 0.20 2:5� 10�2

1.75 0 1 0.53 4:7� 10�2 2:0� 10�3 0.33 2:0� 10�2

1.75 ).25 1 0.57 4:5� 10�2 2:0� 10�3 0.33 2:0� 10�2

1.50 0 1 0.47 3:0� 10�2 2:0� 10�3 0.20 1:0� 10�2

1.50 ).50 1 0.67 2:4� 10�2 2:0� 10�3 0.20 1:0� 10�2

2 0 0.75 0.37 0.17 2:0� 10�3 0.25 5:0� 10�3

2 0 0.50 0.25 0.47 2:0� 10�3 0.50 2:5� 10�2

1.50 0 0.50 0.24 0.38 2:0� 10�3 0.50 5:0� 10�3

1.50 ).50 0.50 0.33 0.30 2:0� 10�3 0.50 5:0� 10�3

a¼ space-fractional order, h¼ skewness, b¼ time-fractional order, l ¼ sb=ha ¼ scaling parameter, hS ¼ space-step, sS ¼ time-step

for sample paths, hH ¼ space-step, sH ¼ time-step for histograms.
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a; h; b; l; h and s used in the figures are reported in

Table 1. For convenience we have also reported

the maximum value of the scaling parameter l as

can be deduced from our theoretical analysis.

More details can be found in [45].

In practice, in our numerical studies there is
required truncation for two different causes. As in

the classical Brownian motion, a trivial truncation

is required if a priori one wants a definite region of

space to be considered in which the walk takes

place. Then, particles leaving this space have been

ignored. However, if 0 < a < 2, at variance with

our discretized Brownian motion, we now have an

infinite number of transition probabilities. Since it
is impossible to simulate all infinitely many dis-

crete probabilities, so the size of possible jumps

must be limited to a maximal possible jump

length.

Figs. 5–8 are concerning four cases (both sym-

metrical and extremal) of strictly space fractional

diffusion: fa ¼ 1:75;b ¼ 1g with h ¼ 0;�0:25 and

fa ¼ 1:5; b ¼ 1g with h ¼ 0;�0:5. From the sam-
ple paths one can recognize the ‘‘wild’’ character

(with large jumps) of the L�eevy flights with respect

to the ‘‘tame’’ character of the Brownian motion

outlined in Fig. 2. Figs. 9 and 10 are concerning

two cases of strictly time fractional diffusion:

fa ¼ 2; b ¼ 0:75g and fa ¼ 2; b ¼ 0:50g; here the

paths exhibit the memory effect visible in a kind of

stickiness combined with occasional jumps to
points previously occupied, in distinct contrast to

the rather tame behaviour in case fa ¼ 2; b ¼ 1g
(simulation of Brownian motion). Finally, Figs. 11

and 12 are concerning two cases of strictly space–

time fractional diffusion: fa ¼ 1:50; b ¼ 0:50; h ¼
0g and fa ¼ 1:50; b ¼ 0:50; h ¼ �0:50g, where the

combined effects of the previous cases are

present.
We have used our discrete models for simula-

tion of particle trajectories by interpreting our re-

distribution schemes as descriptions of Markov

chains with infinitely many states, namely the

possible positions xj. However, as they have the

form of difference schemes in a regular space–time

grid they can ‘‘in principle’’ also serve for the

purpose of approximate computation of the tem-
poral evolution of the density uðx; tÞ. Namely, we

are expecting that uðxj; tnÞ is approximated by

yjðtnÞ=h. In fact, from their essential properties

(conservativity and preservation of non-negativity,

see (4.6), (5.11) and (5.12)) it can by standard

methods of numerical analysis been shown that

our models interpreted as difference schemes are

stable and consistent, hence convergent. We say
‘‘in principle’’ because for practical application

appropriate truncations are required. That there is

also convergence in the chain interpretation

(complete convergence in the stochastic sense) can

be shown by methods of Fourier and Laplace

analysis, see [24,25] for the space-fractional diffu-

sion.

There are other methods of simulating space-
fractional diffusion processes. Without attempting

to be exhaustive, without going into details and

without attempting to give a survey of the existing

and growing literature on the subject let us men-

tion a few possibilities: generations of random

numbers distributed according to a given stable

law, random walks discrete in time but continuous

in space (namely jumps to arbitrary places in
space, not only to grid points), let us mention here

the Chechkin–Gonchar random walk (suggested

and used in [9] and mathematically analyzed in

[25]), and simulation via compound Poisson pro-

cesses (with proper scaling of space and time), see

[27]. In the special field of methods, discrete in

space and time, there also are other methods

available (see the methods sketched in [19] and
discussed in detail in [24,25] of which, in particu-

lar, the Gillis–Weiss random walk must be cited,

see [14]). Final word: Still many questions are open

in this challenging and fascinating field of re-

search!

Acknowledgements

We are grateful to the Italian Group of

Mathematical Physics (INDAM), to the Eras-

mus–Socrates project and to the Research

Commissions of the Free University of Berlin

(Convolutions Project) and of the University of

Bologna for supporting joint efforts of our re-

search groups in Berlin and Bologna. We also
acknowledge partial support by the INTAS Pro-

ject 00-0847.

R. Gorenflo et al. / Chemical Physics 284 (2002) 521–541 537



Appendix A. The Riesz–Feller space fractional

derivatives

In this section we provide the explicit expression

of the Riesz–Feller fractional derivative xDa
h which,

according to (2.4) is defined as the pseudo-differ-

ential operator with symbold
xDa

hxDa
h ¼ �jjjaeiðsign jÞhp=2: ðA:1Þ

Let us now express more properly the operator –

xDa
h as inverse of a suitable integral operator xIa

h ,

whose symbol is required to be jjj�a
e�iðsignjÞhp=2, so

we may write

xDa
h :¼ �xI�a

h : ðA:2Þ
This integral operator was found by Feller [12]

in 1952 generalizing the approach by Marcel Riesz

to Fractional Calculus, see e.g. [51], and it is re-

ferred to as Feller potential by Samko et al. [53]. 8

Using our notation, the Feller potential reads

xIa
h f ðxÞ ¼ c�ða; hÞxIa

þf ðxÞ þ cþða; hÞxIa
�f ðxÞ; ðA:3Þ

where, if 0 < a < 2, a 6¼ 1,

cþða; hÞ ¼
sin½ða � hÞp=2�

sinðapÞ ;

c�ða; hÞ ¼
sin½ða þ hÞp=2�

sinðapÞ ;

ðA:4Þ

and, by passing to the limit (with h ¼ 0) cþð2; 0Þ ¼
c�ð2; 0Þ ¼ �1=2. In (A.4) the operators xIa

� denote

the Riemann–Liouville fractional integrals, also

known as Weyl fractional integrals), defined as

xIa
þf ðxÞ ¼ 1

CðaÞ
R x
�1 ðx� nÞa�1f ðnÞ dn;

xIa
�f ðxÞ ¼ 1

CðaÞ
Rþ1
x ðn � xÞa�1f ðnÞ dn:

(
ðA:5Þ

We note that whereas the coefficients c� can

loose their meaning when a is an integer, the

Riemann–Liouville integral operators Ia
� are well

defined in their action on rapidly decreasing in-

tegrable functions, for any a P 0, being set equal

to the identity operator when a ¼ 0, for conve-

nience (justified by passage to the limit a ! 0). In

the particular case h ¼ 0 we get

cþða; 0Þ ¼ c�ða; 0Þ ¼
1

2 cosðpa=2Þ ; ðA:6Þ

and thus we recover the Riesz potential, see e.g.

[53],

xIa
0 f ðxÞ :¼

1

2CðaÞ cosðpa=2Þ

Z þ1

�1
jx� nja�1f ðnÞ dn:

ðA:7Þ
The Riesz and the Feller potentials are well defined

if the index is located in the interval ð0; 1Þ, or in the

interval ð0; 2Þ, and we have the semigroup prop-

erty, xIa
h xI

b
h ¼ xI

aþb
h , if 0 < a < 1; 0 < b < 1 and

a þ b < 1. Then, following Feller, we define by
analytic continuation the pseudo-differential op-

erator (A.2) in the whole range 0 < a6 2; a 6¼ 1 as

xDa
h :¼ �½cþða; hÞxDa

þ þ c�ða; hÞxDa
��;

0 < a6 2; ðA:8Þ

where xDa
þ :¼ xI�a

þ and xDa
� :¼ xI�a

� are the inverses
of the operators xIa

þ and xIa
�, respectively, and are

referred to as theWeyl fractional derivatives. When

h ¼ 0 the Riesz–Feller derivative can be simply

referred to as Riesz derivative. We note from (A.4)

the property c�ða; hÞ ¼ c�ð�aÞ. For integral rep-

resentations of the operators xI�a
� see [53]; we have

xI�a
� ¼ � d

dx xI1�a
�

� �
if 0 < a6 1;

d2

dx2 xI2�a
�

� �
if 1 < a6 2:

(
ðA:9Þ

For a ¼ 2 (h ¼ 0) we recover the standard second

derivative. In fact, from (A.6) cþð2; 0Þ ¼ c�ð2; 0Þ ¼
�1=2, so from (A.8), (A.9)

xD2
0 ¼ �I�2

0 ¼ xI�2
þ

�
þ xI�2

�
��

2 ¼ d2

dx2

�
þ d2

dx2

��
2

¼ d2

dx2
¼ xD2:

For a ¼ 1ðjhj6 1Þ we have (from calculation with

symbols)

xD1
hf ðxÞ ¼ ½cosðhp=2ÞxD1

0 þ sinðhp=2ÞxD�f ðxÞ;
ðA:10Þ

8 We must note that in his original paper Feller used a

skewness parameter d different from our h; the symbol of the

Feller potential is

jjje�iðsignjÞd
� ��a

so d ¼ � p
2

h
a
; h ¼ � 2

p
ad:

Feller and Samko, Kilbas and Marichev thus use Ia
d where their

d is related to our h as above.
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where xD1
0f ðxÞ ¼ �xD ½xHf ðxÞ�, with

xHf ðxÞ ¼
1

p

Z þ1

�1

f ðnÞ
x� n

dn

¼ 1

p

Z þ1

�1

f ðx� nÞ
n

dn: ðA:11Þ

In (A.11) xH denotes the Hilbert transform (with

symbol cxHxH ðjÞ ¼ i signj) and its singular integral is

understood in the Cauchy principal value sense.

We note that in the limiting extremal cases h ¼ �1

we recover the standard first derivative, i.e.

xD1
�1 ¼ �xD.

Appendix B. The Riemann–Liouville and Caputo

time fractional derivatives

The purpose of this section is to clarify for the

interested reader the main differences between the

Caputo fractional derivative tDb
� adopted in this

paper, see (2.8), and the Riemann–Liouville frac-

tional derivative tDb usually adopted in the litera-

ture. Any formula here is valid for t > 0, with the

assumption that the function f ðtÞ has a finite limit

as t ! 0þ. We recall

tDbf ðtÞ :¼
1

Cð1�bÞ
d
dt

R t
0

f ðsÞ
ðt�sÞb ds; 0 < b < 1;

df ðtÞ
dt ; b ¼ 1:

(
ðB:1Þ

The two fractional derivatives are related to the

Riemann–Liouville fractional integral as follows.

The Riemann–Liouville fractional integral is

tJlf ðtÞ :¼ 1

CðlÞ

Z t

0

f ðsÞðt � sÞl�1
ds; l > 0

ðB:2Þ
(with the convention tJ 0f ðtÞ ¼ f ðtÞ) and is known to
satisfy the semigroup property tJl

tJ m ¼ tJlþm, with

l; m > 0. For any b > 0 the Riemann–Liouville

fractional derivative is defined as the left inverse of
the corresponding fractional integral (like the de-

rivative of any integer order), namely tDb
tJbf ðtÞ

¼ f ðtÞ. Then for b 2 ð0; 1�, we have

tDbf ðtÞ :¼ tD1
tJ 1�bf ðtÞ;

tDb
�f ðtÞ :¼ tJ 1�b

tD1f ðtÞ; ðB:3Þ

tJb
tDb

�f ðtÞ ¼ tJb
tJ 1�b

tD1f ðtÞ ¼ tJ 1
tD1f ðtÞ

¼ f ðtÞ � f ð0þÞ: ðB:4Þ

Recalling the rule

tDbtc ¼ Cðc þ 1Þ
Cðc þ 1� bÞ t

c�b; bP 0; c > �1;

ðB:5Þ
it turns out for 0 < b6 1,

tDb
�f ðtÞ ¼ tDb½f ðtÞ � f ð0þÞ�

¼ tDbf ðtÞ � f ð0þÞ t�b

Cð1� bÞ : ðB:6Þ

Note that for b ¼ 1 the two types of fractional

derivative coincide.

The Caputo fractional derivative represents a

sort of regularization in the time origin for the

Riemann–Liouville fractional derivative and satis-

fies the relevant property of being zero when ap-

plied to a constant. For more details on this
fractional derivative (and its extension to higher

orders) we refer the interested reader to Gorenflo

and Mainardi [22], Podlubny [50] and Butzer and

Westphal [2].
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