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Abstract

We survey the properties of a transcendental function of the Wright type, nowadays
known as M -Wright function, entering a relevant class of self-similar stochastic processes
that we generally refer as time-fractional diffusion processes. Indeed, the probability
densities of these processes are expressed in terms of this function. They evolve in
time according to equations that, containing time-integral operators of fractional order,
generalize the standard diffusion equation. When these generalized diffusion processes
are properly characterized with stationary increments, the M -Wright function is shown
to play the same key role as the Gaussian for the standard and fractional Brownian
motions. Furthermore, our processes provide stochastic models suitable for modelling
phenomena of anomalous diffusion of both slow and fast type.

1 Introduction

By time-fractional diffusion processes we mean certain diffusion-like phenomena governed
by evolution equations containing fractional derivatives in time whose fundamental
solution can be interpreted as a probability density function (pdf) in space evolving
in time. This noteworthy property is indeed peculiar of the most elementary diffusion
process, the Brownian motion, governed by the standard linear diffusion equation. For
this equation the fundamental solution is known to be the Gaussian density with a spatial
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variance growing linearly in time. In such case we speak about normal diffusion, reserving
the term anomalous diffusion when the variance grows differently. A number of stochastic
models for explaining anomalous diffusion have been introduced in literature, among
them we like to quote the fractional Brownian motion, see e.g. [46, 64], the Continuous
Time Random Walk, see e.g. [47, 57], the grey Brownian motion, see [58, 59], and more
generally random walk models based on evolution equations of single and distributed
fractional order, see e.g. [7, 8, 9], [20, 21], [29, 30], [71].

In this survey paper we focus our attention on modifications of the standard diffusion
equation, where the time can be stretched by a power law (t → tα, 0 < α < 2) and the first-
order time derivative can be replaced by a derivative of non-integer order β (0 < β ≤ 1).
In these cases of generalized diffusion processes the corresponding fundamental solution
still keeps the meaning of a spatial pdf evolving in time and is expressed in terms of
a special function of the Wright type that reduces to the Gaussian when β = 1. This
transcendental function, nowadays known as M -Wright function, will be shown to play a
fundamental role for a general class of self-similar processes with stationary increments,
which provide stochastic models for anomalous diffusion, as recently shown by Mura et
al. [49, 50, 51, 52].

The paper is divided as follows. In Section 2 we provide the reader with the essential
notions and notations concerning the integral transforms and fractional calculus, which
are necessary in the rest of the paper. In Section 3 we introduce in the complex plane C the
series and integral representations of the general Wright function denoted by Wλ,µ(z) and
of the two related auxiliary functions Fν(z), Mν(z), which depend on a single parameter.
In Section 4 we consider our auxiliary functions in real domain pointing out their main
properties involving their integrals and their asymptotic representations. Mostly, we
restrict our attention to the second auxiliary function, that we call M -Wright function,
when its variable is in IR + or in all of IR but extended in symmetric way. We derive
a fundamental formula for the absolute moments of this function in IR +, which allows
us to obtain its Laplace and Fourier transforms. In Section 5 we consider some types
of generalized diffusion equations containing time partial derivatives of fractional order
and we express their fundamental solutions in terms of the M -Wright functions evolving
in time with a given self-similarity. In Section 6 we stress how the M -Wright function
emerges as a natural generalization of the Gaussian probability density for a class of self-
similar processes with stationary increments, depending on two parameters (α, β). These
stochastic processes are defined in a unique way by requiring the determination of any
multi-point probability distribution and include the well-known standard and fractional
Brownian motion. We refer to our class as the generalized grey Brownian motion (ggBm),
because it generalizes the grey Brownian motion (gBm) introduced by Schneider [58, 59].
Finally, a short concluding discussion is drawn. For the reader’s convenience, an appendix
is enclosed as a supplement of Section 5.
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2 Notions and Notations

Integral transforms pairs.
In our analysis we will make extensive use of integral transforms of Laplace, Fourier
and Mellin type so we recall our notation for the corresponding transform pairs. We do
not point out the conditions of validity and the main rules, since they are given in any
textbook on advanced mathematics.

Let

f̃(s) = L{f(r); r → s} =

∫ ∞

0

e−sr f(r) dr , (2.1)

be the Laplace transform of a sufficiently well-behaved function f(r) with r ∈ IR+, s ∈ C,
and let

f(r) = L−1
{

f̃(s); s → r
}

=
1

2πi

∫
Br

e +sr f̃(s) ds , (2.2)

be the inverse Laplace transform, where Br denotes the so-called Bromwich path, a

straight line parallel to the imaginary axis in the complex s-plane. Denoting by
L↔ the

justaposition of the original function f(r) with its Laplace transform f̃(s), the Laplace
transform pair reads

f(r)
L↔ f̃(s) . (2.3)

Let

f̂(κ) = F {f(x); x → κ} =

∫ +∞

−∞
e +iκx f(x) dx , (2.4)

be the Fourier transform of a sufficiently well-behaved function f(x) with x ∈ IR, κ ∈ IR,
and let

f(x) = F−1
{

f̂(κ); κ → x
}

=
1

2π

∫ +∞

−∞
e−iκx f̂(κ) dκ , (2.5)

be the inverse Fourier transform. Denoting by
F↔ the justaposition of the original function

f(x) with its Fourier transform f̂(κ), the Fourier transform pair reads

f(x)
F↔ f̂(κ) . (2.6)

Let

f ∗(s) = M{f(r); r → s} =

∫ ∞

0

r s− 1 f(r) dr , (2.7)

be the Mellin transform of a sufficiently well-behaved function f(r) with r ∈ IR+, s ∈ C,
and let

f(r) = M−1 {f ∗(s); s → r} =
1

2πi

∫
Br

r−s f ∗(s) ds , (2.8)
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be the inverse Mellin transform. Denoting by
M↔ the justaposition of the original function

f(r) with its Mellin transform f ∗(s), the Mellin transform pair reads

f(r)
M↔ f ∗(s) . (2.9)

Essentials of fractional calculus with support in IR+ .
Fractional calculus is the branch of mathematical analysis that deals with pseudo-
differential operators that extend the standard notions of integrals and derivatives to
any positive non-integer order. The term fractional is kept only for historical reasons.
Let us restrict our attention to sufficiently well-behaved functions f(t) with support in
IR+. In the literature there exist two main approaches to define the operator of derivative
of non integer order for these functions, referred respectively to Riemann-Liouville and to
Caputo. They are related to the so-called Riemann-Liouville fractional integral defined
for any order µ > 0 as

Jµ
t f(t) :=

1

Γ(µ)

∫ t

0

(t− τ)µ−1f(τ) dτ . (2.10)

We note the convention J0
t = I (Identity) and the semigroup property

Jµ
t Jν

t = Jν
t Jµ

t = Jµ+ν
t , µ ≥ 0 , ν ≥ 0 . (2.11)

The fractional derivative of order µ > 0 in the Riemann-Liouville sense is defined as the
operator Dµ

t which is the left inverse of the Riemann-Liouville integral of order µ (in
analogy with the ordinary derivative), that is

Dµ
t Jµ

t = I , µ > 0 . (2.12)

If m denotes the positive integer such that m−1 < µ ≤ m , we recognize from Eqs. (2.11)
and (2.12): Dµ

t f(t) := Dm
t Jm−µ

t f(t) , hence

Dµ
t f(t) =


dm

dtm

[
1

Γ(m− µ)

∫ t

0

f(τ) dτ

(t− τ)µ+1−m

]
, m− 1 < µ < m,

dm

dtm
f(t) , µ = m.

(2.13)

For completion we define D0
t = I.

On the other hand, the fractional derivative of order µ > 0 in the Caputo sense is defined
as the operator ∗D

µ
t such that ∗D

µ
t f(t) := Jm−µ

t Dm
t f(t) , hence

∗D
µ
t f(t) =


1

Γ(m− µ)

∫ t

0

f (m)(τ) dτ

(t− τ)µ+1−m
, m− 1 < µ < m,

dm

dtm
f(t) , µ = m.

(2.14)
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We note the different behavior of the two derivatives in the limit µ → (m− 1)+. We have

µ → (m− 1)+

{
Dµ

t f(t) → Dm
t J1

t f(t) = D
(m−1)
t f(t)

∗D
µ
t f(t) → J1

t Dm
t f(t) = D

(m−1)
t f(t)−D

(m−1)
t f(0+) ,

(2.15)

where the limit for t → 0+ is taken after the operation of derivation.
Furthermore, recalling the Riemann-Liouville fractional integral and derivative of the

power law for t > 0,
Jµ

t tγ =
Γ(γ + 1)

Γ(γ + 1 + µ)
tγ+µ ,

Dµ
t tγ =

Γ(γ + 1)

Γ(γ + 1− µ)
tγ−µ ,

µ > 0 , γ > −1 , (2.16)

we find the relationship between the two fractional derivatives,

Dµ

[
f(t)−

m−1∑
k=0

tk

k!
f (k)(0+)

]
= ∗D

µ
t f(t) . (2.17)

The Caputo definition for the fractional derivative thus incorporates the initial values of
the function and of its integer derivatives of lower order. The subtraction of the Taylor
polynomial of degree m − 1 at t = 0+ from f(t) means a sort of regularization of the
fractional derivative. In particular, according to this definition, the relevant property for
which the fractional derivative of a constant is still zero can be easily recognized.

Let us finally point out the rules for the Laplace transform with respect to the fractional
integral and the two fractional derivatives. These rules are expected to properly generalize
the well-known rules for standard integrals and derivatives.

For the Riemann-Liouville fractional integral we get,

L{Jµ
t f(t); t → s} =

f̃(s)

sµ
, µ ≥ 0 . (2.18)

For the Caputo fractional derivative we have,

L{∗Dµ
t f(t); t → s} = sµ f̃(s)−

m−1∑
k=0

sµ−1−k f (k)(0+) , m− 1 < µ ≤ m , (2.19)

where f (k)(0+) := lim
t→0+

f (k)(t). The corresponding rule for the Riemann-Liouville

fractional derivative is more cumbersome: it reads

L{Dµ
t f(t); t → s} = sµ f̃(s)−

m−1∑
k=0

[
Dk

t J
(m−µ)
t

]
f(0+) sm−1−k, m− 1 < µ ≤ m, (2.20)



The M-Wright function in time-fractional diffusion processes 6

where the limit for t → 0+ is understood to be taken after the operations of fractional
integration and derivation. As soon as all the limiting values f (k)(0+) are finite and
m− 1 < µ < m, formula (2.20) for the Riemann-Liouville derivative simplifies into

L{Dµ
t f(t); t → s} = sµ f̃(s) m− 1 < µ < m . (2.21)

In the special case f (k)(0+) = 0 for k = 0, 1, m−1, we recover the identity between the two
fractional derivatives. The Laplace transform rule (2.19) was practically the key result of
Caputo [5, 6] in defining his generalized derivative in the late sixties. The two fractional
derivatives have been well discussed in the 1997 survey paper by Gorenflo and Mainardi
[19], see also [38], and in the 1999 book by Podlubny [53]. In these references the Authors
have pointed out their preference for the Caputo derivative in physical applications where
initial conditions are usually expressed in terms of finite derivatives of integer order.

For further reading on the theory and applications of fractional calculus we recommend
the recent treatise by Kilbas et al. [25].

3 The functions of the Wright type

The general Wright function.
The Wright function, that we denote by Wλ,µ,(z), is so named in honour of E. Maitland
Wright, the eminent British mathematician, who introduced and investigated this function
in a series of notes starting from 1933 in the framework of the asymptotic theory of
partitions, see [67, 68, 69]. The function is defined by the series representation, convergent
in the whole z-complex plane,

Wλ,µ(z) :=
∞∑

n=0

zn

n! Γ(λn + µ)
, λ > −1 , µ ∈ C . (3.1)

Originally, Wright assumed λ ≥ 0, and, only in 1940, he considered −1 < λ < 0, see
[70]. We note that in the Vol. 3, Chapter 18 of the handbook of the Bateman Project
[11], devoted to Miscellaneous Functions, presumably for a misprint, the parameter λ
of the Wright function is restricted to be non negative. When necessary, we propose
to distinguish the Wright functions in two kinds according to λ ≥ 0 (first kind) and
−1 < λ < 0 (second kind).

For more details on the Wright functions the reader may consult e.g. [17, 18, 24, 26, 35,
63, 65, 66] and references therein.

The integral representation reads

Wλ,µ(z) =
1

2πi

∫
Ha

eσ + zσ−λ dσ

σµ
, λ > −1 , µ ∈ C , (3.2)
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where Ha denotes the Hankel path. We remind that the Hankel path is a loop starting
from −∞ along the lower side of the negative real axis, encircles the circular area around
the origin with radius ε → 0 in the positive sense, and ends at −∞ along the upper side of
the negative real axis. The equivalence of the series and integral representations is easily
proved using the Hankel formula for the Gamma function

1

Γ(ζ)
=

∫
Ha

eu u−ζ du , ζ ∈ C ,

and performing a term-by-term integration. In fact,

Wλ,µ(z) =
1

2πi

∫
Ha

eσ + zσ−λ dσ

σµ
=

1

2πi

∫
Ha

eσ

[
∞∑

n=0

zn

n!
σ−λn

]
dσ

σµ

=
∞∑

n=0

zn

n!

[
1

2πi

∫
Ha

eσ σ−λn−µ dσ

]
=

∞∑
n=0

zn

n! Γ[λn + µ]
.

It is possible to prove that the Wright function is entire of order 1/(1 + λ) , hence it is of
exponential type only if λ ≥ 0 (that is if it is of the first kind). The case λ = 0 is trivial
since W0,µ(z) = e z/Γ(µ) , provided that µ 6= 0,−1,−2, . . . .

The auxiliary functions of the Wright type.
In his first analysis of the time-fractional diffusion equation Mainardi, see [32, 44], aware
of the Bateman handbook [11], but not yet of the 1940 paper by Wright [70], introduced
the two (Wright-type) entire auxiliary functions,

Fν(z) := W−ν,0(−z) , 0 < ν < 1 , (3.3)

and
Mν(z) := W−ν,1−ν(−z) , 0 < ν < 1 , (3.4)

inter-related through
Fν(z) = ν z Mν(z) . (3.5)

As a matter of fact, the functions Fν(z) and Mν(z) are particular cases of the Wright
function of the second kind Wλ,µ(z) by setting λ = −ν and µ = 0 or µ = 1, respectively.

Hereafter, we provide the series and integral representations of the two auxiliary functions
derived from the general formulas (3.1) and (3.2), respectively.

The series representations for the auxiliary functions read,

Fν(z) :=
∞∑

n=1

(−z)n

n! Γ(−νn)
=

1

π

∞∑
n=1

(−z)n−1

n!
Γ(νn + 1) sin(πνn) , (3.6)
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and

Mν(z) :=
∞∑

n=0

(−z)n

n! Γ[−νn + (1− ν)]
=

1

π

∞∑
n=1

(−z)n−1

(n− 1)!
Γ(νn) sin(πνn) . (3.7)

The second series representations in Eqs. (3.6)-(3.7) have been obtained by using the
reflection formula for the Gamma function Γ(ζ) Γ(1− ζ) = π/ sin πζ.

As an exercise, the reader can directly prove that the radius of convergence of the power
series in (3.6)-(3.7) is infinite for 0 < ν < 1 without being aware of Wright’s results, as it
was shown independently by Mainardi [32], see also [53].

Furthermore, we have Fν(0) = 0 and Mν(0) = 1/Γ(1 − ν). We note that relation (3.5)
between the two auxiliary functions can be easily deduced from (3.6)-(3.7), by using the
basic property of the Gamma function Γ(ζ + 1) = ζ Γ(ζ).

The integral representations for our auxiliary functions read,

Fν(z) :=
1

2πi

∫
Ha

e σ − zσν
dσ , (3.8)

Mν(z) :=
1

2πi

∫
Ha

e σ − zσν dσ

σ1−ν
. (3.9)

We note that relation (3.5) can be obtained also from (3.8)-(3.9) with an integration by
parts. In fact,

Mν(z) =

∫
Ha

e σ − zσν dσ

σ1−ν
=

∫
Ha

e σ
(
− 1

νz

d

dσ
e−zσν

)
dσ

=
1

νz

∫
Ha

e σ − zσν
dσ =

Fν(z)

νz
.

As usual, the equivalence of the series and integral representations is easily proved by using
the Hankel formula for the Gamma function and performing a term-by-term integration.

Special cases.
Explicit expressions of Fν(z) and Mν(z) in terms of known functions are expected for
some particular values of ν. Mainardi and Tomirotti [44] have shown that for ν = 1/q ,
where q ≥ 2 is a positive integer, the auxiliary functions can be expressed as a sum of
simpler (q − 1) entire functions. In the particular cases q = 2 and q = 3 we find

M1/2(z)=
1√
π

∞∑
m=0

(−1)m

(
1

2

)
m

z2m

(2m)!
=

1√
π

exp
(
− z2/4

)
, (3.10)
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and

M1/3(z) =
1

Γ(2/3)

∞∑
m=0

(
1

3

)
m

z3m

(3m)!
− 1

Γ(1/3)

∞∑
m=0

(
2

3

)
m

z3m+1

(3m + 1)!

= 32/3 Ai
(
z/31/3

)
,

(3.11)

where Ai denotes the Airy function.

Furthermore, it can be proved that M1/q(z) satisfies the differential equation of order q−1

dq−1

dzq−1
M1/q(z) +

(−1)q

q
z M1/q(z) = 0 , (3.12)

subjected to the q − 1 initial conditions at z = 0, derived from (3.12),

M
(h)
1/q(0) =

(−1)h

Γ[(1− (h + 1)/q]
=

(−1)h

π
Γ[(h + 1)/q] sin[π (h + 1)/q] , (3.13)

with h = 0, 1, . . . q − 2. We note that, for q ≥ 4 , Eq. (3.12) is akin to the hyper-Airy
differential equation of order q−1 , see e.g. [3]. Consequently, the auxiliary function Mν(z)
could considered as a sort of generalized hyper-Airy function. However, in view of further
applications in stochastic processes, we prefer to consider it as a natural (fractional)
generalization of the Gaussian function, similarly as the Mittag-Leffler function is known
as the natural (fractional) generalization of the exponential function. To stress the
relevance of our auxiliary function, we have also suggested a special name for it, that
is M-Wright function, a terminology that has been followed in literature to some extent1.

Finally, the analysis of the limiting cases ν = 0 and ν = 1 requires special attewntion.
For ν = 0 we easily recognize from the series ‘representations (3.6)-(3.7):

F0(z) ≡ 0 , M0(z) = e−z .

The limiting case ν = 1 is singular for both the auxiliary functions as expected from the
definition of the general Wright function when λ = −ν = −1. Later we will deal with
this singular case for the M -Wright function when the variable is real and positive.

1Some authors including Podlubny [53], Gorenflo et al. [17, 18], Hanyga [22], Balescu [2], Chechkin et
al. [9], Germano et al. [15], Kiryakova [27, 28] refer to the M -Wright function as the Mainardi function.
It was Professor Stanković, during the presentation of the paper by Mainardi and Tomirotti [44] at the
Conference Transform Methods and Special Functions, Sofia 1994, who informed Mainardi, being aware
only of the Bateman Handbook [11], that the extension for −1 < λ < 0 had been already made just by
Wright himself in 1940 [70], following his previous papers published in the thirties. Mainardi, in the paper
[39] devoted to the 80-th birthday of Prof. Stanković, used the occasion to renew his personal gratitude
to Prof. Stanković for this earlier information that led him to study the original papers by Wright and
work (also in collaboration) on the functions of the Wright type for further applications, see e.g. [17, 18]
and [41].



The M-Wright function in time-fractional diffusion processes 10

4 Properties and plots of the auxiliary Wright

functions in real domain

Let us state some relevant properties of the auxiliary Wright functions, with special
attention to the Mν function in view of its role in time-fractional diffusion processes.

Exponential Laplace transforms.
We start with the Laplace transform pairs involving exponentials in the Laplace domain.
These were derived by Mainardi in his earlier analysis of the time fractional diffusion
equation, see e.g. [32], [33],

1

r
Fν (1/rν) =

ν

rν+1
Mν (1/rν)

L↔ e−sν
, 0 < ν < 1 , (4.1)

1

ν
Fν (1/rν) =

1

rν
Mν (1/rν)

L↔ e−sν

s1−ν
, 0 < ν < 1 . (4.2)

We note that the inversion of the Laplace transform of the exponential exp (−sν) is
relevant since it yields for any ν ∈ (0, 1) the expression of the unilateral stable densities
in probability theory. As a consequence, the non-negativity of both the auxiliary Wright
functions when their argument is positive is proved in view of the Bernstein theorem2.

The Laplace transform pair in (4.1) has a long history starting from a formal result by
Humbert [23] in 1945, of which Pollard [55] provided a rigorous proof one year later. Then,
in 1959 Mikusiński [48] got a similar result based on his theory of operational calculus. In
1975, albeit unaware of the previous results, Buchen and Mainardi [4] derived the result
in a formal way. We note that all the above authors were not informed about the Wright
functions. To our actual knowledge the former author who derived the Laplace transforms
pairs (4.1)-(4.2) in terms of Wright functions of the second kind was Stankovic̀ in 1970,
see [63].

Hereafter we would like to provide two independent proofs of (4.1) carrying out the
inversion of exp (−sν) , either by the complex Bromwich integral formula following [32], or
by the formal series method following [4]. Similarly we can act for the Laplace transform
pair (4.2). For the complex integral approach we deform the Bromwich path Br into the
Hankel path Ha, that is equivalent to the original path, and we set σ = sr. Recalling the
integral representation (3.8) for the Fν function and Eq. (3.5), we get

L−1 [exp (−sν) ; s → r] =
1

2πi

∫
Br

e sr − sν
ds =

1

2πi r

∫
Ha

e σ − (σ/r)ν
dσ

=
1

r
Fν (1/rν) =

ν

rν+1
Mν (1/rν) .

2We refer to Feller’s treatise [12] for Laplace transforms, stable densities and Bernstein theorem.
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Expanding in power series the Laplace transform and inverting term by term, we formally
get

L−1 [exp (−sν)] =
∞∑

n=0

(−1)n

n!
L−1 [sνn] =

∞∑
n=1

(−1)n

n!

r−νn−1

Γ(−νn)

=
1

r
Fν (1/rν) =

ν

rν+1
Mν (1/rν) ,

where now we have used the series representation (3.6) for the function Fν with Eq. (3.5).

The asymptotic representation for large argument.
Let us point out the asymptotic behaviour of the function Mν(r) when r → ∞.
Choosing as a variable r/ν rather than r, the computation of the requested asymptotic
representation by the saddle-point approximation is straightforward. Mainardi and
Tomirotti [44] have obtained

Mν(r/ν) ∼ a(ν) r(ν − 1/2)/(1− ν) exp
[
−b(ν) r1/(1− ν)

]
,

a(ν) =
1√

2π (1− ν)
> 0 , b(ν) =

1− ν

ν
> 0 .

(4.3)

The above evaluation is consistent with the first term in the asymptotic series expansion
obtained with a cumbersome and formal procedure by Wright for his general function Wλ,µ

when −1 < λ < 0, see [70]. In 1999 Wong and Zhao have provided asymptotic expansions
of the Wright functions of the first and second kind in the whole complex plane following
a new method for smoothing Stokes’ discontinuities, see [65, 66], respectively.

We note that for ν = 1/2 Eq. (4.3) provides the exact result consistent with (3.10),

M1/2(2r) =
1√
π

e−r2
⇔ M1/2(r) =

1√
π

e−r2/4 . (4.4)

We also note that in the limit ν → 1− the function Mν(r) tends to the Dirac generalized
function δ(r − 1), as can be recognized also from the Laplace transform pair (4.1).

Absolute moments.
From the above considerations we recognize that the following absolute moments in IR+

of the M -Wright functions are finite and turn out to be∫ ∞

0

rδMν(r) dr =
Γ(δ + 1)

Γ(νδ + 1)
, δ > −1 , 0 ≤ ν < 1 . (4.5)
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In order to derive this fundamental result we proceed as follows, basing on the integral
representation (4.9):∫ ∞

0

rδ Mν(r) dr =

∫ ∞

0

rδ

[
1

2πi

∫
Ha

eσ−rσν dσ

σ1−ν

]
dr

=
1

2πi

∫
Ha

eσ

[∫ ∞

0

e−rσν

rδ dr

]
dσ

σ1−ν

=
Γ(δ + 1)

2πi

∫
Ha

eσ

σνδ+1
dσ =

Γ(δ + 1)

Γ(νδ + 1)
.

Above we have legitimate the exchange between the two integrals and we have used the
identity ∫ ∞

0

e−rσν

rδ dr =
Γ(δ + 1)

(σν)δ+1
,

along with the Hankel formula of the Gamma function. Analogously, we can compute all
the moments of Fν(r) in IR+.

The Laplace transform of the M-Wright function.
Let the Mittag-Leffler function be defined in the complex plane for any ν ≥ 0 by the
following series and integral representation, see e.g. [11, 37],

Eν(z) =
∞∑

n=0

zn

Γ(νn + 1)
=

1

2πi

∫
Ha

ζν−1 e ζ

ζν − z
dζ , nu > 0 , z ∈ C . (4.6)

Such function is entire of order 1/α for α > 0; it reduces to the function exp (z) for
ν > 0 an to 1/(1 − z) for ν = 0. We recall that the Mittag-Leffler function for ν > 0
plays fundamental roles in applications of fractional calculus like phenomena of fractional
relaxation and fractional oscillation, see e.g. [1], [19], [38], [36], so that it may be referred
as the Queen function of fractional calculus3.

We now point out that the M -Wright function is related to the Mittag-Leffler function
through the following Laplace transform pair,

Mν(r)
L↔ Eν(−s) , 0 < ν < 1 . (4.7)

For the reader’s convenience we provide a simple proof of (4.7) by using two different
approaches. We assume that the exchanges between integrals and series are legitimate in

3Recently, numerical routines for functions of the Mittag-Leffler type have been provided e.g. by Freed
et al. [13], Gorenflo et al. [16] (with MATHEMATICA), Podlubny [54] (with MATLAB), Seybold and
Hilfer [61].
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view of the analyticity properties of the involved functions. In the first approach we use
the integral representations of the two functions writing∫ ∞

0

e−sr Mν(r) dr =
1

2πi

∫ ∞

0

e−s r
[∫

Ha

eσ − rσν dσ

σ 1− ν

]
dr

=
1

2πi

∫
Ha

eσ σν − 1
[∫ ∞

0

e−r(s + σν) dr

]
dσ

=
1

2πi

∫
Ha

e σ σν − 1

σν + s
dσ = Eν(−s) .

(4.8)

In the second approach we develop in series the exponential kernel of the Laplace transform
and we use the expression (4.5) for the absolute moments of the M -Wright function to
arrive at the series representation of the Mittag-Leffler function,∫ ∞

0

e−sr Mν(r) dr =
∞∑

n=0

(−s)n

n!

∫ ∞

0

rn Mν(r) dr

=
∞∑

n=0

(−s)n

n!

Γ(n + 1)

Γ(νn + 1)
=

∞∑
n=0

(−s)n

Γ(νn + 1)
= Eν(−s) .

(4.9)

We note that the transformation term by term of the series expansion of the M -Wright
function is not legitimate since the function is not of exponential order, see [10]. However,
this procedure yields the formal asymptotic expansion of the Mittag-Leffler function
Eν(−s) as s →∞ in a sector around the positive real axis, see e.g. [11, 37], that is

∞∑
n=0

∫∞
0

e−sr(−r)n dr

n!Γ(−νn + (1− ν))
=

∞∑
n=0

(−1)n

Γ(−νn + 1− ν)

1

sn+1

=
∞∑

m=1

(−1)m−1

Γ(−νm + 1)

1

sm
∼ Eν(−s) , s →∞ .

The Fourier transform of the symmetric M-Wright function.
The M -Wright function, extended on the negative real axis as an even function, is related
to the Mittag-Leffler function through the following Fourier transform pair

Mν(|x|)
F↔ 2E2ν(−κ2) , 0 < ν < 1 . (4.10)

We prove the equivalent formula∫ ∞

0

cos(κr) Mν(r) dr = E2ν(−κ2) . (4.11)
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For this prove it is sufficient to develop in series the cosine function and use formula (4.5)
for the absolute moments of the M -Wright function,∫ ∞

0

cos(κr) Mν(r) dr =
∞∑

n=0

(−1)n κ2n

(2n)!

∫ ∞

0

r2n Mν(r) dr

=
∞∑

n=0

(−1)n κ2n

Γ(2νn + 1)
= E2ν(−κ2) .

(4.12)

The Mellin transform of the M-Wright function.
It is straightforward to derive the Mellin transform of the M -Wright function using result
(4.5) for the absolute moments of the function. In fact, setting δ = s− 1 in (4.5), we get
by analytic continuation

Mν(r)
M↔ Γ(s)

Γ(ν(s− 1) + 1)
, 0 < ν < 1 . (4.13)

Plots of the symmetric M-Wright function.
It is instructive to show the plots of the (symmetric) M -Wright function on the real axis
for some rational values of the parameter ν. To gain more insight of the effect of the
parameter itself on the behaviour close to and far from the origin, we adopt both linear
and logarithmic scale for the ordinates.

In Figs. 1 and 2 we compare the plots of the Mν(x)-Wright functions in −5 ≤ x ≤ 5 for
some rational values in the ranges ν ∈ [0, 1/2] and ν ∈ [1/2, 1], respectively. In Fig. 1
we see the transition from exp (−|x|) for ν = 0 to 1/

√
π exp (−x2) for ν = 1/2, whereas

in Fig. 2 we see the transition from 1/
√

π exp (−x2) to the delta functions δ(x ± 1) for
ν = 1. Because of the two symmetrical hums for 1/2 < ν ≤ 1, the Mν function appears
bi-modal with the characteristic shape of the capital letter M .

In plotting Mν(x) at fixed ν for sufficiently large x the asymptotic representation (4.3)-
(4.4) is useful since, as x increases, the numerical convergence of the series in (4.7) becomes
poor and poor up to being completely inefficient: henceforth, the matching between
the series and the asymptotic representation is relevant and followed by Mainardi and
associates, see e.g. [34, 35, 40, 41].However, as ν → 1−, the plotting remains a very
difficult task because of the high peak arising around x = ±1. For this we refer the reader
to the 1997 paper by Mainardi and Tomirotti [45], where a variant of the saddle point
method has been successfully used to properly depict the transition to the delta functions
δ(x ± 1) as ν approaches to 1. For the numerical point of view we like to highlight the
recent paper by Luchko [31], where algorithms are provided for computation of the Wright
function on the real axis with prescribed accuracy.
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Figure 1: Plots of the symmetric Mν-Wright function with ν = 0, 1/8, 1/4, 3/8, 1/2 for
−5 ≤ x ≤ 5; left: linear scale, right: logarithmic scale.

Figure 2: Plots of the symmetric M -Wright function with ν = 1/2 , 5/8 , 3/4 , 1 for
−5 ≤ x ≤ 5; left: linear scale; right: logarithmic scale.

The IM-Wright function in two variables.
In view of our time-fractional diffusion processes to be considered in the next Sections, it
is worthwhile to introduce the function in two variables

IMν(x, t) := t−ν Mν(xt−ν) , 0 < ν < 1 , x, t ∈ IR+ , (4.14)

which defines a spatial probability density in x evolving in time t with self-similarity
exponent H = ν. Of course for x ∈ IR we have to consider the symmetric version
obtained from (4.14) multiplying by 1/2 and replacing x by |x|.

Hereafter we provide a list of the main properties of this function, which can be derived
from the Laplace and Fourier transforms for the corresponding M -Wright function in one
variable.

From Eq. (4.2) we derive the Laplace transform of IMν(x, t) with respect to t ∈ IR+,

L{IMν(x, t); t → s} = sν−1 e−xsν
. (4.15)

From Eq. (4.6) we derive the Laplace transform of IMν(x, t) with respect to x ∈ IR+,

L{IMν(x, t); x → s} = Eν (−stν) . (4.16)
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From Eq. (4.10) we derive the Fourier transform of IMν(|x|, t) with respect to x ∈ IR,

F {IMν(|x|, t); x → κ} = 2E2ν

(
−κ2tν

)
. (4.17)

Using the Mellin transforms Mainardi et al. [42] derived the following integral formula,

IMν(x, t) =

∫ ∞

0

IMλ(x, τ) IMµ(τ, t) dτ , ν = λµ . (4.18)

Special cases of the IM-Wright function are simply derived for ν = 1/2 and ν = 1/3
from the corresponding ones in the complex domain, see Eqs. (3.10)-(3.11). We devote
particular attention to the case ν = 1/2 for which we get from (4.4) the Gaussian density
in IR,

IM1/2(|x|, t) =
1

2
√

πt1/2
e−x2/(4t) . (4.19)

For the limiting case ν = 1 we obtain

IM1(|x|, t) =
1

2
[δ(x− t) + δ(x + t)] . (4.20)

5 Fractional diffusion equations

Let us now consider a variety of diffusion-like equations starting from the standard
diffusion equation whose fundamental solutions are expressed in terms of the M -Wright
function depending on the space and time variables. The two variables, however, turn
out to be related through a self-similarity condition.

The standard diffusion equation.
The standard diffusion equation for the field u(x, t) with initial condition u(x, 0) = u0(x)
is

∂u

∂t
= K1

∂2u

∂x2
−∞ < x < ∞ , t ≥ 0 , (5.1)

where K1 is a suitable diffusion coefficient of dimensions [K1] = [L]2[T ]−1 = cm2/sec.
This initial-boundary value problem can be easily shown to be equivalent to the Volterra
integral equation

u(x, t) = u0(x) + K1

∫ t

0

∂2u(x, τ)

∂x2
dτ . (5.2)

It is well known that the fundamental solution (usually refereed as the Green function),
which is the solution corresponding to u0(x) = δ(x), is the Gaussian probability density
evolving in time with variance (mean square displacement) proportional to time. In our
notation we hve:

G1(x, t) =
1

2
√

πK1 t1/2
e−x2/(4K1t) , (5.3)
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σ2
1(t) :=

∫ +∞

−∞
x2 G1(x, t) dx = 2K1t . (5.4)

This variance law characterizes the process of normal diffusion as it turns out in the
framework of Einstein’s approach to the Brownian motion (Bm), see e.g. [62].

In view of future developments, we rewrite the Green function in terms of the M -Wright
function by recalling Eq. (5.10), that is,

G1(x, t) =
1

2

1√
K1 t1/2

M1/2

(
|x|√

K1 t1/2

)
. (5.5)

From the self-similarity of the Green function in (5.3) or (5.5) we are led to write

G1(x, t) =
1√

K1 tH
G1

(
|x|√
K1 tH

, 1

)
, (5.6)

where H = 1/2 is the similarity (or Hurst) exponent and ξ = |x|/(
√

K1 t1/2) acts as
the similarity variable. We refer to the one-variable function G1(ξ) as the reduced Green
function.

The stretched-time standard diffusion equation.
Let us now stretch the time variable in Eq. (5.1 )by replacing t with tα where 0 < α < 2.
We have

∂u

∂(tα)
= Kα

∂2u

∂x2
, −∞ < x < +∞ , t ≥ 0 , (5.7)

where Kα is a sort of stretched diffusion coefficient of dimensions [Kα] = [L]2[T ]−α =
cm2/secα. It is easy to recognize that such equation is akin to the standard diffusion
equation but with a diffusion coefficient depending on time, K1(t) = αtα−1 Kα. In fact,
using the rule

∂

∂tα
=

1

αtα−1

∂

∂t
,

we have
∂u

∂t
= αtα−1 Kα

∂2u

∂x2
, −∞ < x < +∞ , t ≥ 0 , (5.8)

The integral form corresponding to Eqs. (5.7)-(5.8) reads

u(x, t) = u0(x) + αKα

∫ t

0

∂2u(x, τ)

∂x2
τα−1 dτ . (5.9)

The corresponding fundamental solution is the stretched-time Gaussian

Gα(x, t) =
1

2
√

πKα tα/2
e−x2/(4Kαtα) =

1

2

1√
Kα tα/2

M1/2

(
|x|√

Kα tα/2

)
, (5.10)
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and the corresponding variance reads,

σ2
α(t) :=

∫ +∞

−∞
x2 Gα(x, t) dx = 2Kαtα . (5.11)

As a consequence, the variance is characteristic of a general process of anomalous diffusion,
precisely of slow diffusion for 0 < α < 1, and fast diffusion for 1 < α < 2.

The time-fractional diffusion equation.
In literature there exist two forms of time-fractional diffusion equation of a single order,
one with the Riemann-Liouvile derivative and one with the Caputo derivative. The two
forms, however, are equivalent if the attention is restricted to a single order of derivation
and to the standard initial condition u(x, 0) = u0(x), as shown in [43].

Taking a real number β ∈ (0, 1], the time-fractional diffusion equation of order β in the
Riemann-Liouville sense reads

∂u

∂t
= Kβ D1−β

t

∂2u

∂x2
, (5.12)

where in the Caputo sense reads

∗D
β
t u = Kβ

∂2u

∂x2
, (5.13)

where Kβ is a sort of fractional diffusion coefficient of dimensions [Kβ] = [L]2[]T ]−β =
cm2/secβ. Like for diffusion equations of integer order (5.1) and (5.7)-(5.8), we consider
the equivalent integral equation corresponding to our fractional diffusion equations (5.12)-
(5.13),

u(x, t) = u0(x) + Kβ
1

Γ(β)

∫ t

0

(t− τ)β−1 ∂2u(x, τ)

∂x2
dτ . (5.14)

The Green function Gβ(x, t) for the equivalent Eqs. (5.12)-(5.14) can be expressed in terms
of the M -Wright function, as shown in Appendix by following two different approaches,

Gβ(x, t) =
1

2

1√
Kβ tβ/2

Mβ/2

(
|x|√

Kβ tβ/2

)
. (5.15)

The corresponding variance can be promptly obtained from the general formula (5.5) for
the absolute moment of the M -Wright function. In fact, using (5.5) and (5.15) and after
an obvious change of variable, we obtain

σ2
β(t) :=

∫ +∞

−∞
x2 Gβ(x, t) dx =

2

Γ(β + 1)
Kβ tβ . (5.16)

As a consequence, for 0 < β < 1 the variance is consistent with a process of slow diffusion
with similarity exponent H = β/2. For further reading on the time-fractional diffusion
equations and their solutions the reader is referred e.g. to [35, 40, 41] and [56], [60].
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The stretched time-fractional diffusion equation.
Let us stretch the time variable in the fractional diffusion equation (5.12) by replacing t
with tα/β where 0 < α < 2 and 0 < β ≤ 1. We have

∂u

∂tα/β
= Kα β D1−β

tα/β

∂2u

∂x2
, (5.17)

namely
∂u

∂t
=

α

β
tα/β−1 Kα β D1−β

tα/β

∂2u

∂x2
, (5.18)

where Kα β is a sort of stretched diffusion coefficient of dimensions [Kα β] = [L]2[T ]−α =
cm2/secα that reduces to Kα if β = 1 and to Kβ if α = β. By integration of Eq. (5.18)
we get the corresponding integral equation, see [51],

u(x, t) = u0(x) + Kα β
1

Γ(β)

α

β

∫ t

0

τα/β−1 (tα/β − τα/β)β−1 ∂2u(x, τ)

∂x2
dτ . (5.19)

The Green function Gα β(x, t) is

Gα β(x, t) =
1

2

1√
Kα β tα/2

Mβ/2

(
|x|√

Kαβ tα/2

)
. (5.20)

with variance

σ2
α,β(t) :=

∫ +∞

−∞
x2 Gα,β(x, t) dx =

2

Γ(β + 1)
Kα β tα . (5.21)

As a consequence, the resulting process turns out to be self-similar with Hurst exponent
H = α/2 and a variance law consistent with slow diffusion for 0 < α < 1 and fast diffusion
for 1 < α < 2. We note that the parameter β does explicitly enter in the variance law
(5.21) only as a multiplicative constant.

It is straightforward to note that the evolution equations of this process reduce to those
for time-fractional diffusion if α = β < 1, for stretched diffusion if α 6= 1 and β = 1, and
finally to standard diffusion if α = β = 1.

6 Fractional diffusion processes with stationary in-

crements

We have seen that any Green function associated to the diffusion-like equations considered
in the previous Section can be interpreted as the time-evolving one-point pdf of certain
self-similar stochastic processes. However, one will not be able to generally define a
unique (self-similar) stochastic process, in that this would require the determination of
any multi-point probability distribution, see e.g. [52].



The M-Wright function in time-fractional diffusion processes 20

In other words, starting from a master equation which describes the dynamic evolution
of a probability density function f(x, t), it is always possible to define an equivalence
class of stochastic processes with the same marginal density function f(x, t). All these
processes provide suitable stochastic representations for the starting equation. It is clear
that additional requirements may be stated in order to “fix” the probabilistic model.

For instance, considering Eq. (5.18), the additional requirement of stationary increments,
as shown by Mura et al., see [49, 50, 51, 52], can lead to a class {Bα,β(t), t ≥ 0},
called “generalized” grey Brownian motion (ggBm), which, by construction, is made up
of self-similar processes with stationary increments and Hurst exponent H = α/2. Thus
{Bα,β(t), t ≥ 0} is a special class of H−sssi processes4, which provide non-Markovian
stochastic models for anomalous diffusion, both of slow type (0 < α < 1) and fast type
(1 < α < 2).

The ggBm generalizes some well known processes, so that it defines an interesting general
theoretical framework. The fractional Brownian motion (fBm) appears for β = 1 and is
associated with Eq. (5.7); the grey Brownian motion (gBm), defined by Schneider [58, 59],
corresponds to the choice α = β, with 0 < β < 1 and is associated to Eqs. (5.12), (5.13)
or (5.14); finally, the standard Brownian motion (Bm) is recovered by setting α = β = 1
being associated to Eq. (5.1). We should note that only in the particular case of Bm the
corresponding process turns out to be Markovian.

In Figure 3 we present a diagram which allows to identify the elements of the ggBm
class. The top region 1 < α < 2 corresponds to the domain of fast diffusion with long-
range dependence5. In this domain the increments of the process Bα,β(t) are positively
correlated, so that the trajectories tend to be more regular (persistent). It should be noted
that long-range dependence is associated to a non-Markovian process which exhibits long-
memory properties. The horizontal line α = 1 represents processes with purely random
(that is uncorrelated) increments, which model various phenomena of normal diffusion.
For α = β = 1 we recover the standard Brownian motion. The fractional Brownian motion
is identified by the vertical line β = 1. The bottom region 0 < α < 1 corresponds to the
domain of slow diffusion. The increments of the corresponding process Bα,β(t) turn out to
be negatively correlated and this implies that the trajectories are very “zigzaging” (anti-
persistent); the increments form a stationary process which does not exhibit long-range
dependence. Finally, the diagonal line (α = β) represents the grey Brownian motion.

4According to a common terminology [64], H−sssi stands for H-self-similar-stationary-increments.
5A self-similar process with stationary increments is said to possess long-range dependence if the

autocorrelation function of the increments tends to zero like a power function and such that it does not
result integrable, see for details [64].
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Figure 3: Parametric class of generalized grey Brownian motion

Here we want to define the ggBm by making use of the Kolmogorov extension theorem
and the properties of the M -Wright function. According to Mura and Pagnini [51], the
generalized grey Brownian motion Bα,β(t) is a stochastic process defined in a certain
probability space such that its finite-dimensional distributions are given by

fα,β(x1, x2, . . . , xn; γα,β) =
(2π)−

n−1
2√

2Γ(1 + β)n det γα,β

∫ ∞

0

1

τn/2
M1/2

(
ξ

τ 1/2

)
Mβ(τ)dτ, (6.1)

with

ξ =

(
2Γ(1 + β)−1

n∑
i,j=1

xiγα,β
−1(ti, tj)xj

)1/2

, (6.2)

and covariance matrix

γα,β(ti, tj) =
1

Γ(1 + β)
(tαi + tαj − |ti − tj|α), i, j = 1, . . . , n . (6.3)

The covariance matrix (6.3) characterizes the typical dependence structure of a self-similar
process with stationary increments and Hurst exponent H = α/2, see e.g. [64].
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Using Eq. (4.17), for n = 1, Eq. (6.1) reduces to:

fα,β(x, t) =
1√
4tα

∫ ∞

0

IM1/2

(
|x|t−α/2, τ

)
IMβ(τ, 1) dτ =

1

2
t−α/2Mβ/2(|x|t−α/2) . (6.4)

This means that the marginal density function of the ggBm is indeed the fundamental
solution (5.20) of Eqs. (5.17)-(5.18) with Kαβ = 1. Moreover, because M1(τ) = δ(τ − 1),
for β = 1, putting γα,1 ≡ γα, we have that Eq. (6.1) reduces to the Gaussian distribution
of the fractional Brownian motion,

fα,1(x1, x2, . . . , xn; γα,1) =
(2π)−

n−1
2

√
2 det γα

M1/2

(2
n∑

i,j=1

xiγ
−1
α (ti, tj)xj

)1/2
 , (6.5)

which finally reduces to the standard Gaussian distribution of Brownian motion as α = 1.

It is clear by the definition used above that, fixed β, Bα,β(t) is characterized only by
its covariance structure, as shown by Mura et al. [50], [51]. In other words, the ggBm,
which is not Gaussian in general, is an example of a process defined only through its first
and second moments, which indeed is a property of Gaussian processes. Consequently,
the ggBm appears to be a direct generalization of Gaussian processes, in the same way
as the M -Wright function can be seen as a generalization of the Gaussian function.

7 Concluding discussion

Among the several approaches of deriving models for anomalous diffusion we have here
surveyed a quite general one based on a family of time-fractional diffusion equations
depending on two parameters α ∈ (0.2), β ∈ (0, 1]. The unifying topic of this analysis is
the so-called M -Wright function by which the fundamental solutions of these equations
are expressed. Such function is shown to exhibit fundamental analytical properties that
were properly used in recent papers for characterizing and simulating a general class of
self-similar stochastic processes with stationary increments including fractional Brownian
motion and grey Brownian motion. In this respect, the M -Wright function emerges to be a
natural generalization of the Gaussian density to model diffusion processes, covering both
slow and fast anomalous diffusion and including non-Markovian property. In particular
it turns out to be the main function for the special class of stochastic processes H − sssi,
which are self-similar with stationary increments, with a fractional type master equation.
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Appendix: The fundamental solution of the time-

fractional diffusion equation

The fundamental solution Gβ(x, t) for the time-fractional diffusion equation can be
obtained by applying in sequence the Fourier and Laplace transforms to any form chosen
among Eqs. (5.12)-(5.14) with the initial condition Gβ(x, 0+) = u0(x) = δ(x). Let
us devote our attention to the integral form (5.14) using non-dimensional variables by
setting Kβ = 1 and adopting the notation Jβ

t for the fractional integral. Then, our
Cauchy problem reads

Gβ(x, t) = δ(x) + Jβ
t

∂2Gβ

∂x2
(x, t) . (A.1)

In the Fourier-Laplace domain, after applying formula (2.18) for the Laplace transform

of the fractional integral and observing δ̂(κ) ≡ 1, see e.g. [14], we get

̂̃
Gβ(κ, s) =

1

s
− κ2

sβ

̂̃
Gβ(κ, s) ,

from which ̂̃Gβ(κ, s) =
sβ−1

sβ + κ2
, 0 < β ≤ 1 , <(s) > 0 , κ ∈ IR . (A.2)

To determine the Green function Gβ(x, t) in the space-time domain we can follow two
alternative strategies related to the order in carrying out the inversions in (A.2).

(S1) : invert the Fourier transform getting G̃β(x, s) and then invert the remaining Laplace
transform;
(S2) : invert the Laplace transform getting Ĝβ(κ, t) and then invert the remaining Fourier
transform.

Strategy (S1): Recalling the Fourier transform pair

a

b2 + κ2

F↔ a

2b1/2
e−|x|b

1/2
, a, b > 0 , (A.3)

and setting a = sβ−1, b = sβ, we get

G̃β(x, s) =
1

2
sβ−1 e−|x|s

β/2
, (A.4)

Strategy (S2): Recalling the Laplace transform pair

sβ−1

sβ + c

L↔ Eβ(−ctβ) , c > 0 , (A.5)

and setting c = κ2, we get
Ĝβ(κ, t) = Eβ(−κ2tβ) . (A.6)
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Both strategies lead to the result

Gβ(x, t) =
1

2
IMβ/2(|x|, t) =

1

2
t−β/2 Mβ/2

(
|x|
tβ/2

)
, (A.7)

consistent with Eq. (5.15). Here we have used the IM-Wright function, introduced in
Section 4, and its properties related to the Laplace transform pair (4.15) for inverting
(A.4) and the Fourier transform pair (4.17) for inverting (A.6).
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Applications, Birkäuser, Basel and Boston (2003), pp. 5–38.

[65] R. Wong and Y.-Q. Zhao, Smoothing of Stokes’ discontinuity for the generalized
Bessel function, Proc. R. Soc. London A 455 (1999), 1381–1400.

[66] R. Wong and Y.-Q. Zhao, Smoothing of Stokes’ discontinuity for the generalized
Bessel function II, Proc. R. Soc. London A 455 (1999), 3065–3084.

[67] E.M. Wright, On the coefficients of power series having exponential singularities,
Journal London Math. Soc. 8 (1933), 71–79.

[68] E.M. Wright, The asymptotic expansion of the generalized Bessel function, Proc.
London Math. Soc. (Ser. II) 38 (1935), 257–270.

[69] E.M. Wright, The asymptotic expansion of the generalized hypergeometric function,
Journal London Math. Soc. 10 (1935), 287–293.

[70] E.M. Wright, The generalized Bessel function of order greater than one, Quart. J.
Math., Oxford ser. 11 (1940), 36–48.

[71] P. Zhuang and F. Liu, Implicit difference approximations for the time fractional
diffusion equation, J. Appl. Math. Comput. 22 No 3 (2006), 87-99.


