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Floods resulting from the sudden collapse of a dam (Dam-Break) are often characterized by the formation of 
shock waves due to irregular bed topography and nonzero tailwater depth. The mathematical description of 
these phenomena is usually accomplished by means of 1D St.Venant equations written in conservation form: 
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with Q=discharge, A=wetted area, R=hydraulic radius, x=distance along the channel, t=time, g=gravitational 
acceleration, S0=bottom slope, Sf=friction slope calculated according to Manning equation and  
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where h = water depth and σ(x, η) = width of the cross-section at height η above the bottom.  
In the last decade many works have been carried out in the field of numerical solution of 1D and 2D St. 
Venant Equations,  mainly devoted to the treatment of source-terms and to accurately capture discontinuities 
(Molinaro & Natale, 1994). Verification of the capabilities of the numerical schemes are often performed 
comparing the computed results with analytical solutions; only few experiments in literature concern 
formation and propagation of shock waves (Chervet & Dalléves, 1970; Bellos et al., 1992).  
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Fig. 1. Channel geometry. 

 
 
 
 
 

Table I. Test conditions. 

In the following experimental results of 1D Dam-Break flows are compared with those obtained from a 
mathematical model based on the MacCormack shock-capturing scheme (see Aureli et al., 1999, 2000 for 

details). Two versions of the model 
have been implemented, in which 
artificial dissipation terms are 
computed according both to Jameson 
formulation (Jameson, 1981) and 
TVD approach adopting Van Leer 
limiter function (Harten, 1983).  
Tests were carried out at Department 
of Civil Engineering of Parma 
University in a tilting laboratory 
flume rectangular in section, 1.0 m 
wide, 0.5 m high and 7.0 m long. 
Experimental tests were designed to 
induce shock formation and 
propagation and wetting and drying 
conditions (Fig. 1 and Table I).  
Measurements of water depth were 
made at four sections along the 
flume, including the dam site, based 
on video recordings of the flow. Figs. 
2-3 show numerical and experimental 
stage hydrographs for test cases N.2 
and N.4, that could be considered 
representative of the whole set.  
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1 0.01 +1 −9 3.40 0.210 0 4 0.025 0 −10 3.50 0.292 0 
2 0.01 0 −10 3.40 0.250 0 5 0.025 +2 −8 3.50 0.250 0 
3 0.01 0 −10 3.40 0.250 0.045 6 0.025 0 −10 3.50 0.292 0.050
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Fig. 2. Computed and measured stage hydrographs for test case 2. 
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After the opening of the gate, the 
velocity of the wetting front 
progressively decreases and a shock 
originates slightly downstream of the 
beginning of the adverse slope. The 
shock wave moves upstream, reflects 
on the wall and starts to propagate 
downstream, vanishing nearly in the 
same section where it was initially 
formed. In the meantime on the 
adverse slope a wetting-drying front 
passes. The whole sequence is 
repeated but, after the reflection on 
the upstream wall, the shock is 
followed by a surface wave train. In 
the rough test case the behaviour is 
similar but surface waves already 
follow the first shock reflection. 
Solid lines refer to numerical solution 
obtained by Jameson formulation of 
artificial dissipation; TVD version of 
the model provides almost identical 
results except around discontinuities, 
that are more sharply captured. 
Comparison of experimental and 
numerical results shows a very good 
agreement as a whole. Shocks, 
reverse flows and wetting and drying 
fronts are well predicted. Of course, 
surface waves with non zero vertical 
velocity components cannot be 
handled by the model based on 1D 
St. Venant equations. Anyway, the 
numerical solution gives a 
satisfactory representation of the 
average depth.  
Velocity measurements were also 

accomplished by means of an Acoustic Doppler Velocity meter (ADV Nortek). The control volume was 
placed on the symmetry axis near the bottom of the flume. Fig. 4 shows calculated and experimental 
velocities for test case N.3 at sections x=1.40 m (inside the reservoir) and x=3.40 m (at the beginning of the 
adverse slope). Numerical results are very close to experiments, even if the first refer to mean velocity and 
the second to point velocity near the bottom. This also suggests that velocity distribution across the section is 
almost uniform, as proved by the observation of the suspended moving particles. In conclusion, the 
agreement between experimental and computed results confirms the validity of the numerical model, even in 
situations in which St. Venant hypothesis are not completely verified.   
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Fig. 3. Computed and measured stage hydrographs for test case 4. 

 

0 5 10 15 20 25 30 35 40
t (s)

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

v 
(m

/s)

0 5 10 15 20 25 30 35 40
t (s)

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

v 
(m

/s)

x = 1.4 m x = 3.4 m

measured

computed

measured

computed

Fig. 4. Computed and measured velocities for test case 3. 


