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Abstract

Different forms of diffusion equations on fractals proposed in the literature
are reviewed and critically discussed. Variants of the known fractional diffusion
equations are suggested here and worked out analytically. On the basis of these
results we conclude that the quest: “what is the form of the diffusion equation

on fractals”, is still open, but we are possibly close to get a satisfactory answer.
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1 Introduction

Diffusion processes are ubiquitous in Nature. They describe a special type of
motion in which a material entity, i.e. an atom, molecule or a larger atomic ag-
gregate inmersed in a fluid or conducting system, executes an apparently random
motion which, for all instances, turns out to be completely unpredictable. De-
spite this undeterministic behavior, diffusion obeys precise and well known laws.
These were formulated more than one century ago by Einstein [1], Smoluchowsky
[2] and other pioneers such as Bachelier [3], who studied this problem even earlier
to model the random behavior of stock prices.

The diffusion law establishes that, upon averaging over all possible trajecto-
ries, a diffusing particle (also called Brownian particle) moves a distance R after

time ¢, from its starting point 7y at ¢ = 0, given by
R? = ((F — 7)?) = 2dDyt (1)

where D (having dimensions of Length?/Time) is the diffusion coefficient and d is
the dimensionality of the space in which this transport process is embedded. Eq.
(1) reflects the absence of correlations between the intermediate collision events
responsible for the ‘chaotic’ motion of the diffusing particle, and also correlations
between different trajectories, which can be seen as totally independent.

In what follows, we will assume for simplicity that diffusion takes place within
an isotropic medium. It is well known that in this case, the probability P(r, )
that the Brownian particle is located at a distance r at time ¢, if it started at the

origin 7 = 0 at t = 0, is a Gaussian (see e.g. [4]),
Ad T2
P(r,t) = a2 P <_E> (2)

where A, is obtained from the normalization condition [3°dr r®='P(r,t) = 1,
A7t = 2971T(d/2), the latter is the gamma function (see e.g. [5]), and we have
assumed without loss of generality that Dy = 1'. The probability distribution

!Notice that Eq. (2) is valid when r < ¢, since for 7 > ¢ one has P(r,t) = 0. In what follows
we will always refer to the case r < t.



function (PDF) P(r,t) is the solution of a second-order partial differential equa-
tion known as the standard diffusion equation (SDE), which for a d-dimensional

isotropic medium (see e.g. [4]) reads,

oP(rt) 1 0 (THM)

ot ri-lor or (3)

Here, we are interested in studying how such an equation should be modified
in order to correctly describe the effects of geometrical constraints on diffusion
such as those typical of fractal structures, a problem which has attracted a great
deal of attention in recent years (see e.g. [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22]). Despite all these efforts, this problem has not been solved
so far in a complete fashion, and the aim of this work is to review some of the
attempts which have been performed in solving this quest, by presenting a critical
discussion of their partial success and failure.

In Sec. 2 we briefly review the main aspects of the SDE. Sec. 3 summarizes
the classical version of the SDE on fractals which admits a simple exact solution.
In Sec. 4 we motivate the need for a generalization of the SDE on fractals, sug-
gesting that this can be achieved within the framework of fractional derivatives.
This approach leads us to the fractional diffusion equation (FDE) on self-similar
structures. In Sec. 5 we suggest a simple (yet not definitive) solution to our prob-
lem by introducing a modification of the standard diffusion equation on fractals

in a formal fashion. Finally, we summarize our conclusions in Sec. 6.

2 Diffusion Equation in an Isotropic Medium

For convenience, we will solve Eq. (3) in the Laplace domain and denote the

Laplace transform of P(r,t) simply as P(r, s), which is given by
P(r,s) :/ dt e~ P(r,t). (4)
0

Multiplying Eq. (3) by exp(—st) and integrating over ¢ one finds,

d—1)0P(r,s) N 0?P(r, s)

—P(r,t =0)+sP(r,s) = ( . B 5,2



which, assuming the initial condition P(r,t = 0) = §(r), becomes

d—1)0P o0*P
sP(r,s) = ( . ) 8(77:’ ?) + 87("7; *) for r>0. (5)
Introducing for convenience the scaled variable z = rs'/2, Eq. (5) becomes

d*W(z) (d—1)dW(x)
dx? + x dx

—W(z)=0 (6)

whose solutions in spatial dimensions d = 1, 2 and 3 are, respectively: Wi(z) =
exp(—x), Wa(z) = Ko(z) (modified Bessel function of zero order), and Wj(z) =
r 'exp(—x) (see e.g. [5]). In particular, in two-dimensions, W, has the asymp-
totic behaviors, Wy (z) ~ \/7% e~ for x — oo, and Wy(x) ~ —In(z/2) + v +
O(z?) for  — 0, where = is the Euler constant. These asymptotic behaviors can
be detected analytically as illustrated in Appendix A.

Using the normalization of P(r,t) in Eq. (4), one finds [;°dr r*'P(r,s) =
1/s, and writing P(r,s) = A(r, s)W(z), where A(r,s) is a normalization factor,

we obtain

P(rs) = %e—”l” (d=1)

= Ko(rs'’?) (d=2)

- %e—”l” (d=3). (7)

It is instructive to recover P(r,t) by considering the inverse Laplace transform

of P(r,s), which can be written as (see e.g. [10])

P(r,t) = i [T o 1P pem) — Pl p e ) (8)

The application to the case d = 3 is discussed in Appendix B.

3 Standard Diffusion Equation on Fractals

Let us consider next the conducting medium to be a homogeneous fractal, i.e.
characterized by a fractal dimension dy < d. Assuming for simplicity the fractal



structure to be self-similar on all length scales, the standard behavior Eq. (1) is

modified on all time scales, yielding (see e.g. [6, 17])
R? = (7~ 70)?) = a®(t/te)*/™ (9)

where the exponent d,, > 2 is the diffusion exponent (or fractal dimension of the
associated random walk, which becomes d,, = 2 on homogeneous media as in Eq.
(1)). In Eq. (9), a has the dimension of length and ¢, is a characteristic time.
On random fractals, i.e. structures which are self-similar in a statistical sense,
Eq. (9) holds asymptotically for ¢ > ¢;. Assuming for the sake of simplicity that
Eq. (9) holds for all ¢, one can incorporate this anomalous diffusion result into the
standard diffusion equation, Eq. (3), yielding what we call the standard diffusion

equation on fractals [7],

oP(r,t) 1 0 (Tdflra 51°(Tat)> | (10)

ot réi-lor or
where § = d,, — 2. Note that Eq. (10) reduces to Eq. (3) when d; = d and

diffusion becomes normal, i.e. d,, = 2 and 6 = 0.

To discuss the properties of Eq. (10) it is convenient to write it as
OP(r,t) _ (df—1—0)0P(r,t) N 1 0%P(r,1)
ot ri+é or r  or2

whose exact solution is simply

(11)

dy

P(r,t) = ;id/z exp (—;th> (12)
as can be verified by direct substitution in Eq. (11), where d; = 2d;/d,,. The
normalization factor A4, can be obtained from the condition [;° dr r4 1P(r,t) =
1, yielding A" = d%'I'(d,/2). In the fractal literature, d, is denoted as the
spectral or fracton dimension, and obeys 1 < d; < d (see e.g. [6, 17]). For fractal
percolation clusters for instance d; ~ 4/3. Clearly, Eq. (12) reduces to Eq. (2)
when d,, = 2 and d; = d.

We consider next the Laplace transform of Eq. (11), which can be written as
(cf. Sec. 2)

dy+1—d,)0P(r,s) N 1 9°P(r, s)

(
sP(r,s) = ri+o or r?  or?z

r>0 (13)
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Introducing now the variable z = rs'/% we obtain from Eq. (13) the differential

equation

d*W(z) (df+1—dy,)dW(z)
+
dx? z dx

which is the analogous to Eq. (6), and proceed studying the asymptotic forms of

~2'W(z) =0 (14)

W (z) which will turn useful later for constructing generalizations of the present
theory.

To do this, we follow the same strategy illustrated in Appendix A. In the
limit x — oo, we assume the asymptotic form Wé:o) (z) ~ z7P exp(—ax”), and
substituting it into Eq. (14), we find

~ W(OO) T
Hy Wi (2) = dT() [B(B+du—df) + ay(dw—d;—7+28)2"

+  (a®y2x? — gt )] , (15)

where Hy, = d?/dz*+ [(d; + 1 — dy)/z]d/dx — % ~2. Thus, to leading order (cf.
Eq. (A2)) the second and third terms in Eq. (15) must vanish and we obtain,
a =1 with
du
’Y—? and ﬁ—z(ds—l)

The limit  — 0 is described by the ansatz Wéf) (z) 1 —b 2" leading to
H, W ~ de —d.) — g0 ~0
e Wa, (2) nn+df—dy)—x i, (@) &

which can be satisfied if

n=dy—dy
generalizing the standard result Eq. (A4). Note that for fractals, d, > dy, i.e.
n > 0.

Unfortunately, the result Eq. (12) is only partially correct since it describes
well the scaling region r < t'/% (see e.g. [7, 14, 18]), but fails regarding the
asymptotic limit 7 > ¢'/% . Indeed, based on compelling evidence coming from
both numerical results and scaling arguments (see e.g. [6, 8, 13, 17]), it is now

widely accepted that

1 T\ % 1 7\
PO~ () oo |~ () | 16)
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valid in the range r >> t'/% where

The correct expression for the exponent ay, is still not known accurately (see the
different attempts in e.g. [11, 12, 14], and refs. therein). To recover the asymptotic
behavior (16), we resort to a different approach based on the concept of fractional
derivatives (see e.g. 15, 16, 22]).

4 Fractional Diffusion Equations

4.1 Uniform Systems

We start out with the Laplace transformed Eq. (5), that we now write in the form

<(d— o o

sP(r,s) = HyP(r,s) = a + W) P(r,s) (17)

and look for an operator I:Id such that fId X I:Id = H,. The simplest choice has

the form

9
or

which coincides with the exact result for d = 1 and d = 3, as can be easily verified.

d—1
+§> with k=2~ (18)

ﬁdzj:( 5

Now, Eq. (17) can be written in its ‘square-root’ form as (see e.g. [9, 10]),

A P
sY2P(r, 5) = HyP(r, s) = —w - ;P(r, ) (19)

where we have chosen the minus sign since it is the only choice compatible with
a bounded solution of P(r,s) for r — oco. Eq. (19) is the fractional derivative
equivalent to the standard form Eq. (17), where its name comes from the fact
that the left-hand side of the equation is related to the Laplace transform of a
fractional derivative of order 1/2 (see e.g. [15, 16, 22]).

The solution of Eq. (19) can be obtained at once yielding,

P(r,s) = Py(s) s'/2) (20)

7(7"51/2)"‘ exp(—r
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where Py '(s) = s'~42T'[(d + 1)/2] is due to the normalization of P(r,s). The
result Eq. (20) coincides with the exact ones Eq. (7) in the cases d = 1 and d = 3.
In d = 2, it is only asymptotically correct, and note that because of normalization
the prefactor is 2/4/m = 1.1284, instead of the exact value m = 1.2533.

4.2 Homogeneous Fractals

We consider now the fractional diffusion version of Eq. (11), in particular of its

Laplace transform Eq. (13). In analogy to Eq. (18), we make the ansatz
H, = —% (% + ;) (21)
where its associated fractional diffusion equation reads,
s'2P(r,s) = Hy, P(r, s). (22)
Then, from Eq. (21) we find

. N 10> 2-00 FKE—-1-0)
Hy, x Hy, = ﬁﬁ—F rl+20 EjL r2+20

(23)

where, to be consistent with Eq. (13), the conditions 20 = 6 and 2% — 0 = o must
be satisfied, yielding

é:g and k= ‘{T“’(ds—n. (24)
Thus, our square-root (fractional derivative) operator Eq. (21) is equivalent to
the original one Eq. (13) in two cases. The first one occurs when & = 0, i.e. for
ds = 1. This result corresponds to topologically one-dimensional fractals, such as
paths generated by random walks or self-avoiding random walks (see e.g. [6]), and
implies that d,, = 2d;. This is one of the few cases in which we can calculate d,,
exactly, at least in the sense that it is completely given by static exponents such
as dy. The other case for which Eq. (21) is equivalent to Eq. (13) corresponds to
the limit & = 1460 = d,,/2, i.e. d, = 3.

The solution of Eq. (22) can be obtained also easily,

Ao 1 2 dw/2 1/2
s1=ds/2 (pgl/dw)F €xp (_d_r s ) (25)

w

P(r,s) =
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which is equivalent to the asymptotic result discussed in Eq. (15). This is another
example of the limitations of the fractional diffusion equation which holds in
general only asymptotically, i.e. for r — oo. As discussed below, the inverse
Laplace transform of Eq. (25) does not behave as in Eq. (12) when r — 0. This

constitutes the main drawback of the fractional diffusion formalism.

4.3 General FDE on Homogeneous Fractals

It is instructive to study a generalization of Eq. (22) which we assume to be of

the form
1 0P(r,s) K

r?  Or rl+?’

where the exponents v and ¢ are related by v(1 + ') = d,,, but are otherwise

s P(r,s) = P(r,s) (26)

arbitrary obeying ' > 0, v < d,, and k # 0 in general. The solution of Eq. (26)

is
Ay 1 V (ol fduy 146
sl=ds/2 (pgl/du)r exp <—%(7”5/ ) ) (27)

where the normalization factor is given by

g\
ATl = <7> F(a(df—/fo.

P(r,s) =

Now we have the elements to discuss the asymptotic behavior r/t'/% > 1 of
P(r,t) associated to the inverse Laplace transform of Eq. (27) (see also Appendix
C). We do this by evaluating the Laplace transform Eq. (4) using the ansatz

1 7\ % 1/ r \¥@)

and applying the saddle-point method (see e.g. the application to this problem

discussed in [10]). The results for the exponents o/, and u'(#') are

of = (“ +0) (4, — 1) - ,-;) (29)

C dy— (146 2
and d(1 40
A0 = #119’)' (30)
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The latter reduces to our desired result Eq. (16) when 6’ = 0, i.e. v/(0) = u, and
to the standard diffusion equation on fractals Eq. (12), in the limit of large r,
when ¢ = d,/2 — 1, i.e. v' = d,. The case #' = 0 corresponds to the simple
exponential decay P(r,s) ~ exp(—rs*/%), which is the direct fractal counterpart
of the standard results Eq. (7).

However as mentioned above, the FDE fails to describe the behavior of P(r, t)
around the origin (r/t'/% — 0), yielding in general a (weak, usually integrable)
divergence, as one can see from the explicit inverse transform Eq. (C2). We have
tried to modify Eq. (26) in different ways to solve this ‘problem of the origin’,
but without reaching satisfactory results (cf. App. D). Other possible forms of
the fractional diffusion equation (see e.g. [23]) do not solve this issue either. We
discuss a final attempt to combine both the result Eq. (12), valid for r < ¢/,
and the asymptotic one Eq. (16), valid for r > ¢!/,

5 Conjectured Form of the Diffusion Equation
on Fractals

In the following, we try to improve on the form of the standard diffusion equation
Eq. (10) rather than on its fractional derivative counterpart. We write Eq. (10)

in the form,

e = e (2 1 () )
where f(z), obeying f(z) — 1 for z — 0, is a scaling function whose form for
x > 1 needs to be determined. For our present purposes, we consider next the
asymptotic behavior of Eq. (31) by assuming that P(r,t) obeys Eq. (16). In the
limit z = 7/t/% > 1, we expect that f(z) ~ Bz’ and determine 6, so that the
resulting P(r,t) is consistent with Eq. (16). To do this, we substitute Eq. (16)
into Eq. (31), and make use of the fact that 0f (r/t"/%)/0r = 0,f(z)/r. We find,

dy 0 (R B
(dw+dw> + cdwx =2~ " f(z) (df — dy + 05 + Q) Qo

2

7 £(2) (dy = dy + 0y + U+ 2000) = + 3% f(). (32)
C C

10
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Figure 1: The function r—(4v=2) f(r) (continuous line) versus r, where the scaling
function f has been taken as f(r) = 1 + (r/t"/% )%~ with B = 1. We have
considered for illustration the cases ¢ = 1 (top continuous line) and ¢ = 103
(bottom continuous line), the unit of length has been taken equal one, and have
chosen d,, = 3, yielding u = 3/2. The dashed line represents the factor r—(%«—2)
corresponding to the standard behavior f = 1. Notice that for ¢ = 1 only values
of r < 1 play a role (see discussion in Sec. 1).

To be consistent, f must obey f(z)z% % ~ B, i.e.

and we obtain,

which in addition leads to the result ao = 0. An illustrative example of a suitable
behavior of f(z) is displayed in Fig. 1 for the case d,, = 3. Note that the diffusion
current, being proportional to 7= f(r /t'/4)dP(r,t)/Or (see e.g. [9]), is enhanced
at large distances since (in our example) 7= f(r /t'/%) ~ 71/2 for r > t'/%_ This
intriguing result remains to be understood, yet the present scheme suggests a

formal solution to the problem.
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6 Concluding Remarks

We have discussed different forms of the diffusion equation on fractal structures.
We have shown that so far two different equations seem to be needed for each
of the diffusion regimes r < R and r > R, where R ~ t*/%_ The former is well

described by a standard type of equation (cf. Eq. (10)),

dP(r, t) 1 0 (Tdf_lr_a O0P(r, t)) . <R, (33)

ot  rd19r or

where 6§ = d,, — 2, while the latter by a more elaborated fractional diffusion

equation, which in Laplace domain reads (cf. Eq. (26) with 6’ = 0),

_OP(r,s) &

1/dw p =7 _p .
s (r,5) o . (r,s), r>R (34)

The problem of how to obtain a single equation which is able to interpolate
between these two asymptotic regimes is still open, but a possible solution has
been indicated (cf. Eq. (31)). Further theoretical work is needed to clarify this

intriguing behavior of diffusion on self-similar structures?.

2T dedicate this work to Prof. Francesco Mainardi on occasion of his 60th anniversary. I
would like to thank him and the University of Bologna for their warm hospitality during the
workshop ‘From Waves to Diffusion and Beyond’, Bologna, 20 December 2002.

12



References

[1] A. Einstein, Annalen der Physik 17, 132 (1905); ibid. 17, 549 (1905); ibid.
17, 891 (1905).

[2] M.V. Smoluchowsky, Annalen der Physik 21, 756 (1906).

[3] L. Bachelier, Annales Scientifique Ecole Normale Supérieure TI1-17, 21
(1900).

[4] L. Reichl, A Modern Course in Statistical Physics, (University of Texas
Press, Austin, 1980).

[6] M. Abramowitz and [.A. Stegun, Pocketbook of Mathematical Functions,
(Verlag Harri Deutsch, Thun, 1984).

[6] S. Havlin and D. Ben-Avraham, Advances in Physics 36, 695 (1987).

[7] B. O’Shaughnessy and 1. Procaccia, Physical Review Letters 54, 455 (1985);
B. O’Shaughnessy and I. Procaccia, Physical Review A 32, 3073 (1985).

[8] A. Bunde, S. Havlin and H.E. Roman, Physical Review A 42, R6274 (1990).

[9] M. Giona and H.E. Roman, Journal of Physics A: Mathematical and General
25, 2093 (1992); M. Giona and H.E. Roman, Physica A 185, 87 (1992).

[10] H.E. Roman and M. Giona, Journal of Physics A: Mathematical and General
25, 2107 (1992).

[11] H.E. Roman and P. Alemany, Journal of Physics A: Mathematical and Gen-
eral 27, 3407 (1994).

[12] H.E. Roman, Physical Review E 51, 5422 (1995).

[13] S. Havlin and A. Bunde, in Fractals and Disordered Systems, 2nd ed., eds.
A. Bunde and S. Havlin, (Springer Verlag, Berlin, 1996), p. 97.

[14] H.E. Roman, Fractals 5, 379 (1997).

13



[15] F. Mainardi, in Fractals and Fractional Calculus in Continuum Mechanics,
eds. A. Carpinteri and F. Mainardi, (Springer Verlag, Wien New York, 1997),
p- 291.

[16] R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific,
Singapore, 2000)

[17] S. Havlin D. Ben-Avraham, Diffusion and Reactions in Fractals and Disor-

dered Systems, (Cambridge University Press, Cambridge, 2000).

[18] C. Schulzky, C. Essex, M. Davison, A. Franz and K.H. Hoffmann, Journal
of Physics A: Mathematical and General 33, 5501 (2000).

[19] R. Metzler and J. Klafter, Physics Reports 339, 1 (2000).

[20] M. Davison, C. Essex, C. Schulzky, A. Franz and K.H. Hoffmann, Journal
of Physics A: Mathematical and General 34, 1.289 (2001).

[21] C. Essex, M. Davison, C. Schulzky, A. Franz and K.H. Hoffmann, Journal
of Physics A: Mathematical and General 34, 8397 (2001).

[22] I.M. Sokolov, J. Klafter and A. Blumen, Physics Today 55, 48 (2002).

(23] E. Barkai, Physical Review E 63, 46118 (2001).

14



APPENDIX

A Asymptotic Forms

It is instructive to determine the asymptotic behavior of W(z), in both the z — oo
and z — 0 limits, by appropriately studying Eq. (6). In the former case, we
assume the asymptotic form choo) (z) ~ 7P exp(—x), and substitute it into Eq.
(6), yielding

EW(2)  (d=1)dWi @) e Wi (z)
+ WN@)0@E™?). (A1)
To leading order, we expect
i (@) =Wy (z)/2%, (A2)

where the operator H = d?/dz? + [(d — 1)/xz]d/dz — 1, yielding the condition
28— (d—1)=0, i.e.
1
f=5(d-1) (A3)

thus,

Wy(z) ~ z=@ D272 5 5 o0,

in agreement with the exact solutions reported for Eq. (6). The limit z — 0 can
be studied by assuming W(go) (z) ~ a+b z". Using this form back into Eq. (6) we
find,

HWO @) =bn(n+d—2) 2" 2 —(a+ba" +...),

yielding the condition n +d —2 =0, i.e.

in agreement with the exact results of Eq. (6). Note that in two dimensions, the
result n = 0 is related to a logarithmic divergence. Indeed, if in this case we
assume W5" (x) & —Inz, and insert this into Eq. (6), the power law divergent

terms x~2 cancel out exactly.
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B The Inverse Laplace Transform

As an illustration of how Eq. (8) works, we consider the case d = 3, where

P(r,s) = rtexp(—rs*/?). Let us consider first the argument of the integral. It

reads,
P(r,pe™)— P(r,pe™) = 2 sin(rp*/?),
r
then
P(r,t) = L ood,o e Pt sin(rp'/?)
’ 7r Jo
2 o0 .
= — dp p e Pt sin(rp)
7r Jo
2 2
= — VT re /M (B1)
77 4¢3/2

which can be written (cf. Eq. (2) using ['(3/2) = \/7/2) as

1 1 —r2/4t
P(r,t) = \/—4_7rt376 /
C The Inverse Laplace Transform of the Gen-

eral FDE Eq. (27)
To obtain the expression for P(r,t) corresponding to Eq. (27), we proceed as in
Appendix B. We find,

1 00 —pt
P(r,t) = %r_’“ ; dp e? exp [—C cos(m/7)] sin[re + Csin(n/y)] (C1)

where
"}’ ’
C = y (,rpl/dw)l—H?

ds K (df — k)
© (2 dw> duy

Introducing the variable x = pt, Eq. (C1) becomes

and
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Ag A
P(r,t) = — tds/2 (tl/dw> / dzr x~
N
exp (—x - % (tl/dw) a7 cos(w/y))

1+6
sin <7T€ + J (tl//rdw) z'/ sin(w/*y)) . (C2)

Note that a related equation reported in [10] has an error. The correct ex-
pression is given by Eq. (C2). We can check this by considering the uniform
limit, dy = d, d,, = 2, corresponding to v = 2 and # = 0. In addition, we take
k = (d—1)/2, to be consistent with Eq. (18) and Eq. (19), yielding ¢ = (3—d)/4.
We obtain,

P(T,t):?m <t1/2> / dr x~ G

e sin ( ) - mxlﬂ) (C3)

1
Ag'=T (%) :

For instance, in the case d = 1 Eq. (C3) yields, with 4y = 1,
r
P(r,t) = 7Tt1/2/ dr z7Y% e cos( 1/2x1/2>

= 7rt1/2/ dy e~ v? cos(tl/zy)

1 1 —r2 /4t

While in d = 3, the other exact limit of the theory, Eq. (C3) yields, where again
AO = 17

where

P(r,t) =
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D An Attempt to Deal with the Problem of the
Origin

There exists a simple remedy to eliminate the divergence near » — 0 due to the
‘source’ term, ~ 1/r, typically occurring within the FDE such as Eq. (26). Let
us consider the latter in the case #' = 0, i.e. v = d,,. We suggest the form
OP(r, s kgt dw
a ér - B + rst/dw P(r.s).
One can take B(d,) = cos(m/dy), for instance, so that B(2) = 0, and Eq. (D1)
reduces to Eq. (19) in the standard case. Now, Eq. (D1) yields,
A 1
s1-ds/2 (B + rsi/dw)s

s/% P(r ) = (D1)

P(r,s) = exp(—rst/d). (D2)

This result leads to the same asymptotic form of P(r,t) as in Eq. (16), but in
contrast to Eq. (C2) it does not display a divergence when r — 0. This can be

seen from the explicit expression of P(r,t) which can be obtained as in Eq. (C2)

as,
Ay 1 oo ek r
P(r,t) = ?OW/O dxr x ¢ Y "(x)exp (—x - (tl/—dw) gt/ cos(w/dw)>
sin (7r5 + (tljd ) x % sin(7/dy,) + /@@) (D3)
where ¢ =1 — d,/2,
2
Y2(z) = (1 + 2Wde:c1/dw> cos?(1/dy) + ( tlfdw) &2/ (D4)
and ( / 1/d ) 1/d
T/t ) gt
® = arctan ll () g tan(ﬂ/dw)] )

The result Eq. (D3) is still not satisfactory since, as one can realize by nu-
merically performing the integrations in Eq. (D3), P(r,t) displays in general
a non-monotonous behavior for r/ tl/dw < 1. In particular, it does not behave as
P(r,t) ~ t=%/2 (1 — r% /d%2t) when r — 0. On the basis of this, and other more
complex ansatz that we do not discuss here, we conclude that the FDE can be

considered useful only in the asymptotic limit r/ tl/de > 1.

18



