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Mellin-Barnes integrals are characterised by integrals involving products
and ratios of gamma functions with integration contours that thread their
way around sequences of poles of the integrands. They are a powerful tool in
the development of convergent or asymptotic expansions of functions defined
by integrals, sums or differential equations. Furthermore they can be com-
bined with the closely related Mellin transform. The great utility of these
integrals resides in the facts that the asymptotic behaviour near the origin
and at infinity of the function being represented is related to the singularity
structure in the complex plane of the resulting integrand and to inherent
flexibility associated with deformation of the contour of integration over sub-
sets of these singularities. For an exhaustive treatment of the Mellin-Barnes
integrals we refer to the recent monograph by Paris and Kaminski [5].

The names refer to the two authors, who in the first 1910’s developed
the theory of these integrals using them for a complete integration of the
hypergeometric differential equation. However, as pointed out by Tricomi
in [1] (Vol. 1, Ch. 1, §1.19, p. 49), these integrals were first used by
S. Pincherle in 1888 [6]. For a revisited analysis of the pioneering work of
Pincherle (1853-1936, Professor of Mathematics at the University of Bologna
from 1880 to 1928) we refer to the recent paper by Mainardi and Pagnini
[3].

The Mellin-Barnes integrals have recently been applied to numerically
evaluate the fundamental solutions of space-time fractional differential equa-
tions for anomalous diffusion, see [2], [4]. These solutions turn out to be high
transcendental functions belonging to the Fox H class. The most simple, not
trivial, example of this class is the Mittag-Leffler function, that generalizes
in a natural way the exponential: for negative argument it exhibits a power
law decay, suitable to explain slow relaxation phenomena.
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Figure 1: The Mittag-Leffler function Eβ(−tβ) for β = 0.25, 0.50, 0.75, 1.
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