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A physical-mathematical approach to anomalous diffusion may be based
on generalized diffusion equations (containing derivatives of fractional order
in space or/and time) and related random walk models. By the space-time
fractional diffusion equation we mean an evolution equation of the form

xDα
θ u(x, t) = tD

β
∗ u(x, t) , x ∈ IR , t ∈ IR+ ,

obtained from the standard linear diffusion equation by replacing the second-
order space derivative with a Riesz-Feller derivative of order α ∈ (0, 2] and
skewness θ (|θ| ≤ min{α, 2 − α}), and the first-order time derivative with a
Caputo derivative of order β ∈ (0, 1].

The fundamental solution (for the Cauchy problem) of the fractional dif-
fusion equation can be interpreted as a spatial probability density evolving
in time of a peculiar self-similar stochastic process. We view it as a general-
ized diffusion process, that we call fractional diffusion process. By adopting
appropriate finite-difference schemes of solution, random walk models (dis-
crete in space and time) have been generated, see e.g. [2, 5], which provide
interesting realizations of the fractional diffusion processes.

However, a more general approach to anomalous diffusion is known to
be provided by the master equation for a continuous time random walk
(CTRW), formerly introduced by Montroll and Weiss in 1965 [4], where the
wandering particle makes jumps at random times. CTRW is thus defined by
a waiting time distribution and a jump width distribution, which are usually
assumed to be independent of each other.

In [1] this master equation is shown to reduce to our fractional diffusion
equation by a properly scaled passage to the limit of compressed waiting
times and jump widths. Finally, following [3, 6], we describe a method of
simulation and display (via graphics) results of a few numerical case studies,
see e.g. Fig. 1.
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Figure 1: Sample paths for CTRW’s with θ = 0. At left we have: β = 1 and
α = 2, 1.75, 1.6, 1.5 ; at right we have: α = 2 and β = 1, 0.95, 0.85, 0.75 .
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