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Abstract

In this paper algorithms for numerical evaluation of the Mittag-Leffler function
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and its derivative for all values of the parameters a > 0, 8 € R and all values of the
argument z € C are presented. For different parts of the complex plane different
numerical techniques are used. In every case we provide estimates for accuracy
of the computation; numerous pictures showing the behaviour of the Mittag-
Leffler function for different values of the parameters and on different lines in the
complex plane are included. The ideas und techniques employed in the paper can
be used for numerical evaluation of other functions of the hypergeometric type.
In particular, the same method with some small modifications can be applied for
the Wright function which plays a very important role in the theory of partial
differential equations of fractional order.
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1. Introduction

The function
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z
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(%) kE:OF(1+ak),a>0,z€C, (1)

was introduced by Mittag-Leffler in 1902 in connection with his method of sum-
ming divergent series. It is suited to serve as a very simple example of an entire
function of a specified order 1/« and of normal type. Further investigations of
properties of this function and its applications to various questions of mathemati-
cal analysis have been carried out by Wiman [33]-[34] and Buhl [7]. An important
generalization,
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z
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was introduced by Humbert [22], Agarwal [1], Humbert and Agarwal [23], Cleota
and Hughes [9].

In recent years the interest in functions of Mittag-Leffler type among scientists,
engineers and applications-oriented mathematicians has deepened. This interest
is caused by the close connection of these functions to differential equations of
fractional (meaning: non-integer) order and integral equations of Abel type, such
equations becoming more and more popular in modelling natural and technical
processes and situations (Babenko [2], Bagley and Torvik [3], Blair [4]-[5], Caputo
and Mainardi [8], El-Sayed [12], Gorenflo et al. [16], Gorenflo and Mainardi [17]-
[19], Gorenflo and Rutman [20], Gorenflo and Vessella [21], Luchko [24], Luchko
and Srivastava [27], Mainardi [28], Schneider and Wyss [30], Slonimski [31], West-
erlund and Ekstam [32]).

Although there already exists a rich literature on analytical methods for solv-
ing differential equations of fractional order, it is to be remarked that solutions
in closed form have been found only for such equations with constant coefficients
and for a rather small class of equations with particular variable coefficients. In
general, numerical solution techniques are required.

In connection with the basic role of Mittag-Leffler type functions for the so-
lution of fractional differential equations and integral equations of Abel type it
seems important as a first step to develop their theory and stable methods for
their numerical computation. The most simple function of Mittag-Lefler type,
E,(z), depends on two variables: the complex argument z and the real parameter
a. The generalizations need at least one more argument, and a may be allowed to
be complex. Experience in the computation of special functions of mathematical
physics teach us that in distinct parts of the complex plane different numerical
techniques should be used. The aim of this paper is the development of some
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methods for computing the Mittag-Leffler function (2) and its derivative as well
as the assessment of the range of their applicability and accuracy. We propose
Taylor series in the case 0 < o < 1 for small |z|, asymptotic representations for |z|
of large magnitude, and special integral representations for intermediate values of
the argument z. By aid of a recursion formula we reduce the case 1 < « to the case
0 < a < 1. We devise the needed algorithms in the system MATHEMATICA.

2. Integral representations of the Mittag-Leffler function

Integral representations play a prominent role in the analysis of entire func-
tions. For the Mittag-Leffler function (2) such representations in form of an
improper integral along the Hankel loop have been treated in the case =1 and
in the general case with arbitrary 3 by Erdélyi et al. [13] and Dzherbashyan [10],
[11]. They considered
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under the conditions

0<a<?2, % < 0 < min{m, Ta}. (5)

The contour ~y(e; ) can be seen in Figure 1. It consists of two rays S_s and
Ss (arg¢ = =4, [¢| > e and arg¢ = §, |(] > €) and a circular arc Cs(0;¢)
(I¢| =€, —6 < arg( < 6). On its left side there is a region G(7) (¢, d), on its right
side a region G (e;0).

Using the integral representations in (3), (4) it is not difficult to get asymptotic
expansions for the Mittag-Leffler function in the complex plane. Let 0 < o < 2,
B be an arbitrary number, and ¢ be chosen to satisfy the condition (5). Then we
have, for any p € N and |z| — oo:

Whenever |arg z| < 4,

PR < S s 6
il = S = Y gy HOUAT) (©
Whenever ¢ < |argz| <,
. 2 ok O(Ls/-1s ;
) == 30 55—y HOUAT) @
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These formulas are also used in our numerical algorithm.

In what follows we restrict our attention to the case 6 € R, the most important
in the applications. For the purpose of numerical computation we look for integral
representations better suited than (3) und (4). With

ecl/a C(lfﬁ)/a

8(¢7) =
we then have
1 1
I - 27T’iOé /y(e;é) (b(C’ Z) dC - 27T’iOé /5’—5 ¢(C7 Z) dC (8)
1 1
2mia /06(0§6) ¢(C, 2) dC + ey /Sé d(C,2)d¢ =1 + Iy + Is.

Now we transform the integrals I;, I» and I3. For I} we take ( = re %, ¢ <r < o0
and get

I =

1 1 € e(re’i‘s)l/o‘(Tefié)(lfﬁ)/a
- 2mia Js_ g /

6(C,2)dC = 5— . — e Pdr.  (9)

Analogously for (with ¢ = re®, € <r < 00)

1 1 +oo g(re!®)/e (1.,i8\(1-B)/a
Iy = / 6(C,2) d¢ = / € (re”) e dr. (10)
Ss €

2mic 2mic retd — z

Ss

Cs(0;¢) G(e)

G (e 0)

Figure 1: The contour v(€; 6)
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For I, we have ( = ee?, —6 < p < 6 and

1 1 g e(eeiw)l/a (Eeicp)(lfﬁ)/a .
I, = d¢ = . €' d
> 2ria /05(0;6) 9(,2)de 2 /,5 e — 2 aen iy

lH(1-8)/a /6 e€' /e ip((1-B) /at+1

) )
- d(p:/ P[a7ﬁ767(p72]d()07
-5

2o _5 €etr — z

lH(1=0)/a gt/ cos(p/a) (cos(w) + isin(w))

2ma €etr — z

P[a7/6767()072] =

)

w =€/ sin(p/a) + o(1+ (1= B)/a).

We rewrite the sum I; + I3 as

L phee  re® (s (1=B)
L+ 13= / ‘ (re) e
€

2mia ret — 2
—i6\1/a s _
B e(re™) (7“6 15)(1 B)/c e—iS} 0
re~® —

i(rt/e sin(6/a)+5(1+(1—B) /a))

_ 1 /+OO T(lfﬂ)/aerl/o‘ cos(0/cx) { €
2miee Je
i/ sin(8/a)+S(1-+H(1-6)/a))

+o0
o re—’i(s_z }dr:/e K[a,/@,é,r,Z] d?”,

ret — z

with ' |
Kla, B,6,r,2] = Lr(lfﬁ)/aeﬂ/a cos(8/ax) rsin(y — ) — zsin(y)
s My Oyl T T2_2TZCOS(6)+22 ’

¢ =r/sin(6/a) + 6(1 + (1 — B)/a).
By aid of (8)-(13) we can rewrite the formulas (3) and (4) as

“+o00 )
E.3(z) :/6 Kla, 8,6,r, 2| dr +[5 Pla, B, €, 0, 2] dop, z € G(_)(e; 9),

+o0 é
E.p5(2) = Kla, 8,6,r, 2] dr + /_SP[a,ﬂ, €, ¢, 2] dp

€

1 a
—i—az(l_ﬁ)/o‘ezl/ , z€ G (0).

(11)

(12)

(13)

(14)

(15)

Let us now consider the case 0 < a < 1, z # 0. By condition (5) we can choose

0 = min{m, ma} = wa. Then the kernel function (13) looks simpler:

Klo, B, 2] = R’[a,ﬁ,r, 2]

(16)
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_ Lr(lfﬁ)/aefﬂ/a rsin(m(l — §)) — zsin(7(1 — B+ «))
T r2 — 2rzcos(ma) + 22

In the formulas (14)-(16) for computation of the function E, g(z) at the arbitrary
point z € C, z # 0 we will distinguish three possibilities for arg z, namely
A) |arg z| > 7o,
B) |arg z| = 7a,
C) |arg z| < ma.

First we conside the case A): |arg z| > mwa.

G (e;ma) GH)(e;ma)

V(& ma)

Figure 2: The case |arg z| >

In this case z always (for arbitrary €) lies in the region G(~)(e;d) (see Figure
2) and we arrive at

THEOREM 2.1. Under the conditions
0<a<l, BeR, |arg z| > 7ma, 2 #0

the function E, g(z) has the representations

E. 5(z) :/ f([a,ﬁ,r, z]dr + [ Pla, B¢, ¢, 2]dp, e >0, BeR, (17)

Bap(e) = [ Klapirzldr, if f<1+a, (18)
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1/

Eo5(2) =

with

sin(ma) /OO e’
0

1
dr—=, ifg=1 19
T r2 — 2rz cos(ma) + 22 T < to (19)

)

B 1 B _yyarsin(m(l — 3)) — zsin(r(1 - B+ a))
% — (1=B)/a—r
[, B, 7, 2] o ¢ r2 — 2rz cos(ma) + 22

el (1=B)/a ge!/* cos(2/@) (cog(w) + i sin(w
P[aaﬂa € ¢, Z] = 2o eiw’ E Z) ( ))

w = e sin(p/a) + p(1 + (1 - B)/a).

P r oo f. The representation (17) follows immediately from (14) with 6 = 7«
and (16) and holds for arbitrary 8 € R. Let us now consider (17) for § < 1 + a.
In this case we have

)

|Pla, B,6,0,2]] < Cet0-Ale _pa<p<ra, 0<e<1

with a constant C' not depending on ¢. Consequently,

Pla, B,€,¢,2z]dp — 0 if € — 0. (20)

—TTx

Further we have )
Kla, B,r, 2] = O(r(lfﬁ)/o‘), r — 0.

This means: If 8 < 1 + « the integral

/Oof([a,ﬁ,r,z]dr
0

is a convergent improper integral with singularity at » = 0, but it is there not sin-
gular if # < 1. Using (20), we can calculate a limit for ¢ — 0 in the representation
(17) and so arrive at the representation (18).

Finally, in the case 8 = 1 4+ a we have the formulas

L e eoslel) (cos(e!/ sin(p/a)) + isin(e!/* sin(p/a)))

Plas e, 0,2) = 21 ety — z ’
iyes iyes
lim Pla, B, €, ¢, z] dp = / lim Pla, B, €, ¢, 2] dp (21)
=0 _ra —ma €0

e 1 1
[ (e
_ra 2oz z

the corresponding integral converging uniformly with respect to €. Hence for
(8 =1+ « there holds the formula

- sin(ma) e e
K = — 22
[, 8,7, 2] a2 —2rzcos(ma) + 22 (22)
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and the integral
oo ~
/ Ko, 8,7, 2] dr
0

is non-singular in the point 7 = 0. The representation (19) now follows from (17),
(21) und (22). m

Example: Let =1, 0< a <1, z=—t%<0.
Theorem 2.1 then yields the representation

© 1 i/a 1 sin(ma)
E —ta — / — " d 9
a1 (=1°) 0 ra’ r2 4+ 2rt® cos(ma) + t2 "
which by insertion of r = z%t® can be transformed to
o ] 2% Lsin(ra)
Eoq(—t%) = / —e dz. 23
at(=17) o T a2t 270 cos(mar) + 1 . (23)

For the representation (23) which can be obtained by the Laplace transform
method see Gorenflo and Mainardi [17].

The next case we consider is the case B): |arg z| = ma.

G (e;ma) GH)(e;ma)

yiye’

V(& ma)

Figure 3: The case |arg z| = ma

In this case we are not allowed to make e arbitrarily small in our contour
v(€;0), because z is directly lying on this contour if € < |z| (see Figure 3).
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THEOREM 2.2. Under the conditions
0<a<l, BeR, |arg z|=ma, 2#0

the function E, g(z) has the representation

E.3(z) :/ f([a,ﬁ,r, 2] dr+[ﬂaP[a,ﬁ, €, 0,z dp, €>|z], (24)

with

- 1 4 _arsin(m(l —B)) — zsin(m(1 — B+ «))
— = (=-p)/a T
Ko, 8,1, 2] —r e T 2z ces(ra) 7

)

1+ (1=B)/a yet/* cos(p/a) (cos(w) + isin(w))

2ma €elr — z

Pla, B, ¢e, ¢, 2] = )
w=e/"sin(p/a) + o(1+ (1 - B)/a).

Proof. Ife > |z| then z is lying in the region G(~)(¢; §) and the representation
(24) follows from (14) with § = 7o and (16). m

Finally let us discuss the case C): |arg z| < ma.

G (e;ma) GH)(e;ma)

yiye’

V(e ma)

Figure 4: The case |arg z| < ma

In this case, if 0 < € < |z|, then z is in the region G(*)(e; ), and we have



10 R. Gorenflo, J. Loutchko and Yu. Luchko

THEOREM 2.3. Under the conditions
0<a<l, BeR, |arg z| < ma, z#0

the function E, g(z) possesses the representations

giyes

Eup(e) = [ Klafinldr+ [ Plagieelds (25)

—TTx

1 o
+Ez(l—ﬂ)/aezl/ , O <e< |Z|, /8 [ R,

S 1 @
Fap(e) = [ Klafornaldr + 22090 i g<14a,  (20)

1 _pl/a
sin(ma) /00 T
Pasle) == d 27
6(2) wa  Jo r?—2rzcos(ma) + 22 r (27)
11 e
—+—&"" if B=14a
z  az
with
K[a,ﬁ,r, z] = Lr(l—ﬂ)/ae—rl/a rsin(n(1 — 3)) — zsin(w(1 — g + a))j

o r2 — 2rz cos(ma) + 22

lH(1=08)/a gt/ cos(p/a) (cos(w) + isin(w))

2T €etr — z
w=e¢’® sin(p/a) + (1 + (1 — 8)/a).

P r o o f. Similar to the proof of Theorem 2.1; use (15) instead of (14).

P[a7/6767(p72] =

)

3. Computation of the Mittag-Leffler function F, 3(z)

We have proved that for arbitrary z # 0 and 0 < « < 1 the Mittag- Leffler
function E, g(z) can be represented by one of the formulas (17)- (19), (24)-(26).
We intend to use these formulas for numerical computation if ¢ < |z|, 0 < ¢ < 1
and 0 < o < 1. In the case |2] < ¢, 0 < ¢ < 1 we compute E, g(z) for arbitrary
a > 0 by aid of the power series (2). The case 1 < « can be reduced to the case
0 < a <1 by aid of a recursion formula. For computation of the function E, g(z)
for arbitrary z € C with arbitrary indices a > 0, 8 € R, we will distinguish three
possibilities:

A) |z] <¢, 0<g<1(qis afixed number), 0 < «,

B) |2| >¢, 0 <a<1and

C)lzl >¢, 1 <a.

In each case we compute the Mittag-Leffler function with the prescribed ac-
curacy p > 0.

First we consider the case A): 2] <¢, 0 < g < 1.
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THEOREM 3.1. In the case |z] < ¢, 0 < ¢ < 1, 0 < « the Mittag-Leffler
function can be computed with the prescribed accuracy p > 0 by use of the
formula

ko Sk
Eop5(2) = k;Z::o T(3 + k) +p(2), [u(2)] < p, (28)

ko = max{[(1 — B)/a] + 1, [In(p(1 — [2[))/In(|2])]}-

P r o o f. We transcribe the definition (2) into the form

m zk s zk
o p(2) = kzzjo TG ram A Em aEm) = k%;l NGETR

For all k > ko > [(1 — 8)/a] + 1 we have the inequality
LB+ ak)>1

and thus the estimate (m + 1 > ko)

u(zym)| =] > e[ < Y 2 = [ e
k=m+1 L(6 + ak) k=m+1 1=

The estimate |u(z)| := |u(z,ko)| < p follows from the inequality ko > [In(p(1 —

[21))/ n(|z[)]. m

REMARK 3.1.  For computation of the function E,g(z) in case A) it is
recommendable to choose in Theorem 3.1 a number ¢ not very close to 1 (in order
to have not a large number of terms in the sum of formula (28)). In our computer
programs we have taken ¢ = 0.9.

We proceed with the case B): ¢ < |z|, 0 <a < 1.

In this case we use the integral representations (17)-(19), (24)-(26). We then
must compute numerically either the improper integral

I:/ f([a,ﬂ,r,z]dr, a € {0, €},

f([a,ﬂ,r, z] — ir(l—ﬂ)/ae_rl/a rsm(ﬂ(l - ﬁ)) - zsm(7r(1 — B+ a))’
T r2 — 2rz cos(ma) + 22

or even the integral

yiye’
J = Pla, B, €, 0, z] dp, € >0,
—TTx
el (1=B)/a !/ cos(p/a) (0o (w) + 4 sin(w))
2ma €t — z

P[a’/B’ 67 SO’ Z] =

)
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w=e"sin(p/a) + p(1+ (1 - f)/a).

The second integral J (the integrand Pla, 3, €, ¢, z] being bounded and the limits
of integration being finite) can be calculated with prescribed accuracy p > 0 by
one of many product quadrature methods.

For calculating the first (improper) integral I over the bounded function
K[a,ﬂ,r, z| we use

THEOREM 3.2. The representation
oo o .
1= [T Rlagor2)dr = [ Rl 2)dr +p(), ()] < p, a0} (29
a a
is valid under the conditions
0<a<l, 0<qg<]z,

o { max{1, 2[2], (~ In(rp/6))°), i3> 0,
0=\ max{(|] + 1), 2/2], (~2n(mp/(6(15] + 2)(28)"))*}, if B <o.

P roof. We try to estimate the absolute value of
oo ~
u(z, R) = / Ko, 8,7, 2] dr
R

in the expression

I:/Rf([a,ﬁ,r,z]dr—i—u(z,R), a € {0,¢€}.

We first consider an estimate of the function K [, B,7,2]. Let zg = €™ and

r > 2|z|. We then have

1 1
r?2 — 2rzcos(mar) + 22| 2|2 — | |2 — 7
< ! = ! <2
SR =Tl (R =T=D ez - gz? T

and hence also

~ 1 o
Ko, B, 7, 2)] < —r(-O/ag=r" Ir| + |21
T |72 — 2rz cos(ra) + 22|

1 _ _ 1/0467" 6 _ _ _rl/a
< — p(1=B)ja,—rt/eP D (1-B)/a—1,—rl/*
- ﬂar € 7r2 ﬂar €

Hence we have, for R > 2|z|, the estimate

(e R)| < [ Rl dr (30)
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< / B R / t-0etdt = O1(1 - g, RV,
R/« ™

— Jr T« ™

with the incomplete gamma function (see Erdélyi et al. [13])
oo
INa,z) :/ et ldt, 2 >0
xT

More estimates can be obtained by aid of

LEMMA 3.1. For the incomplete gamma function I'(1 — (3,x) the following

estimates hold:
T1-p3,z)<e™ z>1, >0, (31)

IT(1—-03),z) < (8] +2)zPe ™™ z>|8+1, <0. (32)

Proof. Fort>ax>1and 8 > 0 we have the inequality tPet < et and
hence also (31) from

uu—@mg/fﬁﬁ:f@

xT

If B < 0 we determine n € N such that —(n+1) < 8 < —n and treat the integral
I'(1 — 3,x) by n-fold partial integration:

T(1-Ba)=a e =Bz P le ™+ BB+ 1) 2" (33)

n—1 co M
N Sl | (GRS Ea R Vsl I (R
j=0 =0

Now f+n+1>0and x > |5+ 1> 1 in the last integral, and we can use the
inequality (31):
oo
/ th et < e
€T

For x > |f|+ 1 and —(n+ 1) < f < —n we have
e > [Br TP > BB+ Va7 > > BB+ 1) (B + ).
The latter inequalities together with the representation(33) yield the estimate
IT(1—3,2) < (n+2)zPe ™ < (I8 +2)z P2, |z| > |6] + 1,

and thus Lemma 3.1 is proved.

Let us return to the proof of Theorem 3.2. (30) and Lemma 3.1 yield the
estimate

e R B3>0, R>1

6
Z,R) < 7 i «
lu(z, R)| { %(|ﬂ| +2)R—[3/ae_31/ , B<0, RV > |8 +1.
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For f > 0 we have |u(2)| := |u(z,r0)| < p, if 7o = max{1,2|z|, (—In(wp/6))*},
and for § < 0 we should find an rg such that the inequality

6 —B/a _Tl/a
(181 + e < p (35)

is fulfilled. We solve this exercise by aid of

LEMMA 3.2. For arbitrary z,y,q > 0 there holds the inequality

a¥ < (qy)veld. (36)

P roof With 2z = ay, a > 0, the inequality (36) can be rewritten in the
form (ay)? < (qy)¥e™/? which is equivalent to a¥ < ¢¥e®/? and hence also to

o) <ty

The latter inequality is true because of
¢¥? > max{a/q,1}, a,q > 0.

Hence Lemma 3.2 is proved.

Denoting ré/ “ by =, —3 by y, and taking ¢ = 2 we rewrite the inequality (35)
by aid of (36) in the form

E *ﬁ/a —rl/a _ E Yy, —T
~ (18] +2)rg /%0 = 2 (18] + 2)ave
6 y,z/2,~z _ 0 18] ,—ri/* /2
< (181 + )@y e = Z(18] + 22182 < .

Solving for r¢g we find |u(2)| := |u(z,70)] < p for § < 0 and ro = max{(|5] +
1)2,2]2], (~21n(rp/(6(8] +2)(21))7)° ). m

The last case we have to discuss is the case C): ¢ < |z], 1 < a. Here we use
the recursion formula (see Dzherbashyan [11])

1 m—1 )
Eopl2) = — S Bojm (/™™™ (m > 1). (37)
h=0

In order to reduce case C) to the cases B) and A) we take m = |« + 1 in formula
(37). Then 0 < ao/m < 1, and we calculate the functions Ea/mﬁ(zl/me%ih/m) as

in case A) if [2|Y/™ < ¢ < 1, and as in case B) if |z|'/™ > q.
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REMARK 3.2. The ideas und techniques employed for the Mittag-LefHier
function can be used for numerical calculation of other functions of the hyperge-
ometric type. In particular, the same method with some small modifications can
be applied for the Wright function playing a very important role in the theory
of partial differential equations of fractional order (see for example Buckwar and
Luchko [6], Gorenflo et al. [15], Luchko [25], Luchko and Gorenflo [26], Mainardi
et al. [29]). To this end, the following representations (see Gorenflo et al. [14])
can be used instead of the representations (2), (3), and (4):

o Zk

o(p, B; 2) :Zm7 p>-1, peC,

k=0

0pi2) = 5 [ TG, p> -1, e

T 2m
where Ha denotes the Hankel path in the (-plane with a cut along the negative
real semi-axis arg( = 7.

4. Computation of the derivative of the function E, 3(z)

In many questions of analysis the derivative of a function plays an important
role. The derivative of the Mittag-Lefller function can be used for example in
iterative methods for determination of its zeros in the complex plane. The function
E, 3(z) being an entire function, we find by term-wise differentiation of its power
series (2) the representation

, & kT (k4 1)RP
Ban) = 2 g7 ak) ~ 2Tl T Bt al) (39)

For numerical calculation of the function Ej, ;5(z) with prescribed accuracy p we
distinguish two cases: A) |z| < ¢ <1 (q is a fixed number) and B) |z| > g¢.
We start with the case A): |z| < ¢ < 1.

THEOREM 4.1. In the case |z| < q < 1 the derivative (38) of the Mittag-Leffler
function can be calculated by aid of the formula

k
, B 0 (k+1)zF

ko = max{k1, [In(p(1 — |2[))/In(|2])]},
(2—a—-0)/(a—1)]+1, a>1,
k=< [(B—a—08)/a] +1, O0<a<l1, D<O, (40)
max{[3=2=2] 4 1, [I=229D] 1), 0<a <1, D>,

202
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3
w:a+ﬂ—§, D=0a?—4af +6a+1
with prescribed accuracy p > 0.

P r oo f. By formula (38) we have

, & (k+ 1)zF
Eoz,ﬁ(z) - kzzor(a‘i‘/@‘i‘ak) +H(Zam)
with

= (k+1)zF

(2,m) = T
HEm) = 2 Tlatpo+ab)

and can estimate the absolute value of p(z,m). Now I'(x) > 1 for z > 1. So, we
have the inequalities

Fa+p+ak)=(a+f+ak-—1)'(a+f+ak—1)>a+F+ak—1>k+1 (41)

if
a>1L, k>k=[2-a-0)/(a-1)] =1,
Fa+pB+ak)=(a+f+ak—-1)(a+B+ak—-2)(a+8+ak—-2) (42)
>(a+pf+ak—1)(a+F+ak—2)>k+1
if

O0<a<l, k>k,

with the natural number k; given by (40).
From (41), (42) follows the estimate

0 o) 1
(k+1)2F P

wzm)| < Y |le———=| < > | = , m+ 1>k,
/it INa+ B+ ak) P/ 1— |7

and we finally get

()] = |p(z, ko)l < p, ko = max{ky, [In(p(1 — |2[))/In(|z[)]}-

|
Now we consider the case B): |z| > ¢.
In this case we use the formula (see Dzherbashyan [11])

E&ﬁ(z) _ Ea,ﬁ—l(z) _O(f: - 1)E0475(Z)’ (43)

which reduces the calculation of the derivative of the Mittag-Leffler function to
that of the function E, g(z), already worked out.
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5. Numerical Algorithm

The numerical scheme for computation of the Mittag-Leffler function given
in pseudocode notation by the algorithm below is based on the results presented
in Section 3. The algorithm uses the defining series (2) for arguments z of small
magnitude, its asymptotic representations (6), (7) for arguments z of large mag-
nitude, and special integral representations for intermediate values of the argu-
ment that include a monotonic part [ K(«a,f,x,2)dx and an oscillatory part
[ P(a, B, €, ¢, z) dp, which can be evaluated using standard techniques.

GIVEN a >0, 3€R, 2z € C, p> 0 THEN
IF 1 < « THEN

ko= la] +1

Ea,ﬂ( ) - k; Zko 01 Ea/ko ﬁ( ko exp(ka))
ELSIF z = 0 THEN

Ea5(2) = )
ELSIF |2| < 1 THEN

ko = max{[SZ2T, [Infp(1 — [2])]/ In(|2])]}

k
Eop(z) = Zk;:o F(,@i—ak)
ELSIF |2| > |10 + 5a| THEN
ko= [-1 ()/hKVDJ
IF |arg z| < ¢ + $min{m, ar} THEN
a— ﬂ) Sl/a —k

Eop(2) = éz “ Zk 1 T(B—ak)
ELSE
k zik
Eop(2) = =20l t5—am
ELSE
{ max{1, 2[z|, (—In(%))"}, >0
X0 = «a _ p
max{(|ﬁ| +(11)_5’) 2|Z|a ( 21n([6(‘ﬁ|+2)(2\6| 181] )) } p<0
K(ao, B,x,2) = %X = exp(—x@ )Xsm[7;(21 2,8)()]“;5(127[38;26—1—@}
(1-8) 1 s(w)+1 sin(w
Plasfie,9:2) = et exp(en cos($))Leleltisnle)

w=¢(1+ 8 4 v sin(2)
IF |arg z| > ar THEN
IF § <1 THEN
Eap(2) = g K(a, B, x, 2) dx
ELSE
Ea,ﬂ(z) = 1X0 K(a7ﬂ7Xa Z) dX + ffégn P(Cl,ﬂ, 1’ ¢’ Z) d¢
ELSIF | arg z| < ar THEN
IF § <1 THEN
(1-8) a
Eop(z) = J° K(a, B,x, 2)dx + 22 = e
ELSE
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(1-5) a
Euop(z) = [ K(a, 8,x,2) dx + [*7 P(a, B, |—;|, ,2)do+ 1273 e
2
ELSE
Eap(2) = [X0) Ko B,x,2) dx + [0, Pl 8, 52 6, 2) dg

2

END

REMARK 5.1.  The formulas for F, g(z) in this algorithm are in error at most
by p. It is advisable to take p = ¢, = machine precision.

6. Figures

In this section, some figures generated by aid of the methods described in the

paper are presented. We have produced them by using the programming system
MATHEMATICA.

Figure 5: The function F, g(—t) for « = 0.25, § =1 and its derivative.
Black line: E, g(—t), grey line: 4(E, (1))
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Figure 6: The function E, g(—t) for « = 1.75, § =1 and its derivative.
Black line: E, g(—t), grey line: %(Ea”g(—t))

i ! ! s
\ 20 40 60 50 100

Figure 7: The function E, g(—t) for « = 2.25, § =1 and its derivative.
Black line: E, g(—t), grey line: %(Ea”g(—t))
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200
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100 |
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Figure 8: |E, 5(2)| — oo for o = 0.75, f =1, arg(z) = o

L L L L L
10 20 30 40 50

Figure 9: |Eo(z)| — % for a =0.75, B =1, arg(z) = %4
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0.125

0.075

0.025

Figure 10: |E, g(2)| — 0 for « = 0.75, =1, arg(z) = 3?‘T”

Figure 11: E, g(z) for a = 0.75, f =1, arg(z) ==
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Figure 12: |E, g(2)| — oo for a = 1.25, =1, arg(z) =

Figure 13: |Eq(z)| — 1 for @ =1.25, 3 =1, arg(z) = &F
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! ! L
10 20 30

Figure 14: |E, g(2)| — 0 for « =1.25, =1, arg(z) =

n
40

3ar

4

A+

L
TOO0

. \
20 40 —6—

Figure 15: E, g(z) for a = 1.25, =1, arg(z) ==
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