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FRACTIONAL CALCULUS :

Some Numerical Methods

Rudolf GORENFLO

Department of Mathematics and Computing Sciences, Free University of Berlin
Arnimallee 3, D-14195 Berlin, Germany

e-mail: gorenflo@math.fu-berlin.de

ABSTRACT

A survey is given on some numerical methods of Riemann-Liouville fractional
calculus. The topics discussed here will be: (a) approximation of fractional derivatives
by generalized finite differences and their use in numerical treatment of fractional
differential equations, (b) discretized fractional calculus and its use in numerical
treatment of Abel type integral equations of first and second kind, (c) product
integration and collocation methods for Abel integral equations, (d) the problem
of ill-posedness of Abel integral equations of first kind.

1991 Mathematics Subject Classification: 26A33, 45E10, 45J05, 65L12, 65R30.

1. INTRODUCTION

We shall describe and discuss a few methods of numerical treatment of ordinary
fractional differential equations and Abel integral equations of first and second kind.

This research was partially supported by the Research Commission of Free
University of Berlin. The author is grateful to the National Research Council (CNR)
of Italy for the support given in occasion of an extended visit to University of Bologna
in the framework of the Programme of Visiting Professors of the National Group for
Mathematical Physics (GNFM). He appreciates the good cooperation he has with
Professor Francesco Mainardi in theory and applications of fractional calculus.



278 Fractional Calculus: Some Numerical Methods

There exists a rich literature on these subjects, Abel integral equations being a special
sort of Volterra integral equations, and much material and many references on theory
and practice can be found in the books by Brunner and van der Houwen [1] and by
Linz [2]. For the analytical theory of the relevant fractional integral and differential
operators we recommend the books by Samko, Kilbas and Marichev [3] and by K.S.
Miller and B. Ross [4]. Let us also mention the book by Gorenflo and Vessella [5].
Concerning the basic theory of fractional differential equations and their applications
and references we refer the reader to the papers by Gorenflo and Mainardi [6] and
by Mainardi [7] that he will find in this volume.

The linear operators occurring in the sequel and to be approximated are the Rie-
mann-Liouville operator Jα of fractional integration and the operatorDα of fractional
differentiation, α being nonnegative.

Here we do not hesitate to repeat the definitions introduced in [6] in order to
make this contribution self-consistent. The operator Jα is defined by the formula

Jαu(t) :=
1

Γ(α)

∫ t

0

(t− τ)α−1 u(τ) dτ, t > 0 , α > 0 , (1.1)

whereas its left-inverse Dα is given as

Dα := Dm Jm−α , m− 1 < α ≤ m, m ∈ IN , (1.2)

whereDm denotes the ordinary derivative of orderm. For complementation we define

J0 = D0 = I (Identity operator). (1.3)

In particular, we have

Ju(t) =
∫ t

0

u(τ) dτ, t > 0 .

These formulas, of course, require that the function u is sufficiently well behaved.
We note the semigroup property

JαJβ = Jα+β for α ≥ 0, β ≥ 0, (1.4)

and the formula (for α ≥ 0)
DαJα = I,

which means
DαJαu(t) = u(t). (1.5)

Remark: In order to remain in accordance with the standard notation I for the
Identity operator we use the character J for the integral operator and its power Jα.
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For convenience, we define the operator Jα
−∞ by

Jα
−∞u(t) :=

1
Γ(α)

∫ t

−∞
(t− τ)α−1 u(τ) dτ , t ∈ IR , α > 0 . (1.6)

If u(t) is a causal function, i.e. u(t) = 0 for −∞ < t < 0 then

Jα
−∞u(t) = J

αu(t) for t > 0. (1.7)

By Jαu(0) we mean the limit (if it exists) of Jαu(t) for t → 0+. This limit may be
infinite. It is useful to have in mind the effect of our operators Jα and Dα on the
power functions tγ with γ > −1, t > 0. We have, for α ≥ 0, the relations

Jαtγ =
Γ(γ + 1)

Γ(γ + 1 + α)
tγ+α , Dαtγ =

Γ(γ + 1)
Γ(γ + 1− α) t

γ−α . (1.8)

For proofs consult [3], [4] or [8].

Note the remarkable fact that the fractional derivative Dαu is not zero for the
constant function u(t) ≡ 1 if α 	∈ IN . In fact, (1.8) with γ = 0 teaches us that

Dα1 =
1

Γ(1− α) t
−α, α ≥ 0, t > 0. (1.9)

This, of course, is ≡ 0 for α ∈ IN, due to the poles of the gamma function in the
points 0,−1,−2, . . .. Furthermore, we observe, again by looking at (1.8), that

Dαtα−1 ≡ 0 for t > 0, α > 0,

which implies that Dα is not right-inverse to Jα. We have

JαDαtα−1 ≡ 0, but DαJαtα−1 = tα−1 for t > 0, α > 0.

These matters cause some problems in numerical treatment of fractional
differential and integral equations and require great care in analytical investigations.

Everything would be more coherent if we would consistently work with the
operators Jα

−∞ and Dα
−∞ = DmJm−α

−∞ , m − 1 < α ≤ m, m ∈ IN, and with
generalized functions in the sense of Gel’fand and Shilov [9] instead of functions,
these generalized functions vanishing for t < 0. In the case of continuous functions
u(t) having continuous derivatives up to order m for t ≥ 0 , an alternative would
be to use the Caputo fractional derivative Dα

∗ = Jm−αDm as we have described in
[6]. However, in order to remain in the mainstream of published work in fractional
calculus, we use classical functions defined for t ≥ 0, and the operators Jα and Dα.
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For numerical treatment of fractional differential and integral equations it is
essential to have available good approximations of the operators Dα and Jα of
fractional differentiation and integration. So, in Section 2 we shall discuss the
approach of Grünwald [10] and Letnikov [11] for approximation of Dα by generalized
finite differences, and in Section 3 we shall describe the basic ideas of discretized
fractional calculus as it has been developed by Lubich [12]. In Section 4 we shall
give a short survey on literature on product integration and collocation methods for
Abel type integral equations, and on the problem of ill-posedness of Abel integral
equations of first kind. This ill-posedness causes specific troubles in many situations
where a situation of evaluation of physical measurements is modeled by use of an
Abel integral equation of first kind (see [5], [8] and [13] for examples).

Throughout, our presentation will be informal, all occurring functions being
assumed to be so regular that what is written down is meaningful. For precise
conditions of required smoothness etc. and for rigorous proofs the reader is advised
to look into the quoted references.

2. GENERALIZED FINITE DIFFERENCES
For derivation of approximations to the fractional differentiation operator Dα it

is convenient to make use of the discrete operators of translation (shift) and finite
differences. In a lucid way the theory of numerical differentiation and integration
(with equidistant grid points) is developed in Chapters 7 to 10 of [14]. See also
Chapter 6 of [15].

Let be τ ∈ IR . Then we define the shifting operator Eτ and the (backward,
forward, central) difference operators ∇τ , ∆τ and δτ by their action on a function
u(t) defined for t ∈ IR. 



Eτu(t) = u(t+ τ) ,

∇τu(t) = u(t)− u(t− τ) ,
∆τu(t) = u(t+ τ)− u(t) ,
δτu(t) = u(t+ τ/2)− u(t− τ/2) .

(2.1)

Obviously, the operators Eτ for τ ∈ IR have the group property,

Eσ+τ = EσEτ , σ ∈ IR, τ ∈ IR , (2.2)

meaning EσEτu(t) = Eσu(t+ τ) = u(t+ τ + σ), and it is for this reason that in Eτ

we use τ as an exponent instead of as an index. We furthermore have the relations,
with I as Identity operator,

∇τ = I −E−τ , ∆τ = Eτ − I, δτ =
1
2

(
Eτ/2 − E−τ/2

)
, (2.3)

and all operators of this group commute with each other.
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With these notations, we can write the well-known approximations [u(t)− u(t−
h)]/h and [u(t+h/2)−u(t−h/2)]/h for the derivative u′(t) of a differentiable function
u(t) as [∇hu(t)]/h and [δhu(t)]/h, with h > 0 small. For h→ 0 these approximations
have O(h) and O(h2), respectively, as order of accuracy, if the function u(t) is
sufficiently smooth. See again [14] or [15].

Higher order derivatives u(n)(t) = Dnu(t) with n ∈ IN can, with h > 0 small, be
approximated by

[∇n
hu(t)]/h

n = h−n(I −E−h)nu(t)

or
[δn

hu(t)]/h
n = h−n

(
Eh/2 −E−h/2

)n

u(t)

again in case of u(t) being sufficiently smooth, with order of accuracy O(h) or O(h2),
respectively. The powers ∇n

h and δn
h can readily be expanded via the binomial

theorem:

∇n
h =

n∑
j=0

(−1)j
(
n

j

)
E−jh,

δn
h =

n∑
j=0

(−1)j
(
n

j

)
E(n−j) h/2E−j h/2 =

n∑
j=0

(−1)j
(
n

j

)
E(n/2−j) h.

This leads to the well known formulas

h−n
n∑

j=0

(−1)j
(
n

j

)
u(t− jh) = Dnu(t) +O(h), (2.4)

h−n
n∑

j=0

(−1)j
(
n

j

)
u (t+ (n/2− j) h) = Dnu(t) +O(h2). (2.5)

In passing, let us remark that also

h−n∆nu(t) = Dnu(t) +O(h).

However, for applications to causal problems backward operators are more
appropriate.

The remarkable fact now is that these formulas can be generalized to the case
of noninteger order of derivative. Replacing the positive integer n by a positive real
number α amounts to use the formal powers

∇α
h =

∞∑
j=0

(−1)j
(
α

j

)
E−j h, δα

h =
∞∑

j=0

(−1)j
(
α

j

)
E(α/2−j) h,
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in analogy to the expansions (E−h replaced by the complex variable z)

(1− z)α =
∞∑

j=0

(−1)j
(
α

j

)
zj ,

(z−1/2 − z1/2)α = z−α/2
∞∑

j=0

(−1)j
(
α

j

)
zj =

∞∑
j=0

(−1)j
(
α

j

)
zj−α/2,

which are convergent if |z| < 1. We thus obtain theGrünwald-Letnikov approximation

h−α ∇α
hu(t) = h

−α
∞∑

j=0

(−1)j
(
α

j

)
u(t− jh) = Dαu(t) +O(h) (2.6)

and the difference approximation

h−α δα
hu(t) = h

−α
∞∑

j=0

(−1)j
(
α

j

)
u (t+ (α/2− j) h) = Dα u(t) +O(h2). (2.7)

These formulas reduce to (2.4) and (2.5) if α = n ∈ IN .

In [3] precise sufficient conditions are given for convergence of∇α
hu(t) towards u(t)

as h → 0. A necessary condition, of course, is that the infinite series does converge
which certainly is the case if u(t) decays towards zero sufficiently fast as t→ −∞, in
particular if u(t) = 0 for all t < 0. This can naturally be supposed if u(t) is solution
of an evolutionary fractional differential equation with starting point t = 0. Hence,
if u(t) = 0 for t < 0,

h−α ∇α
hu(t) = h

−α

[t/h]∑
j=0

(−1)j
(
α

j

)
u(t− jh), (2.8)

h−α δα
hu(t) = h

−α

[t/h+α/2]∑
j=0

(−1)j
(
α

j

)
u(t+ (α/2− j) h) . (2.9)

However, these formulas have order O(h) or O(h2), respectively, of accuracy only if
transition of u(t) to zero for t < 0 is sufficiently smooth at the origin t = 0. From
[16] one can take, among other things, that existence of integrable derivatives Dnu(t)
up to n = [α] + 3 or n = [α] + 4, respectively, is sufficient for uniform O(h) or O(h2)
accuracy in an arbitrary bounded interval [0, T ].
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If one wants to numerically differentiate a function u(t) given as a smooth function
for t ≥ 0 then the transition to its extension by zero for negative argument t may
be non-smooth at the origin t = 0, even discontinuous, and the approximations (2.8)
and (2.9) are of dubious value and may cause trouble. However, often this singularity,
induced by the zero extension, has the form of a generalized polynomial

p(t) = c0tβ0 + c1tβ1 + . . .+ cktβk , t ≥ 0 , p(t) = 0 , t < 0 ,

which can be subtracted to obtain a function sufficiently smooth in all of IR and
vanishing for negative argument. By (1.8) now p(t) can be fractionally differentiated
exactly,

Dαp(t) =
k∑

j=0

Γ(βj + 1)
Γ(βj + 1− α) t

βj−α, if all βj > −1 .

If the coefficients cj are not known but −1 < β0 < β1 < β2 < . . . , then good
knowledge of the function u can be used to calculate or estimate them. For example,
c0 = lim [t−β0u(t)] as t→ 0+ .

When trying to approximate the solution u(t) of an ordinary fractional differential
equation, given for t ≥ 0, by a grid function uh(jh) (with a ”small” positive steplength
h), j = 0, 1, 2, . . . , one can make use of (2.8) by replacing all occurrences of fractional
derivatives Dαu(t) by

h−α ∇α
huh(kh) = h−α

k∑
j=0

(−1)j
(
α

j

)
uh((k − j)h), k = 1, 2, 3, . . .

and recursively solving for the new value uh(kh). Troubles arise if at the origin u(t)
is not smoothly extendable to zero for negative argument, and further research how
to overcome these is required.

Another problem is the problem of stiffness. Depending on the sign of the
coefficients of the various terms in a linear differential equation (fractional or non-
fractional) it may be necessary to restrict the size of h in order to have at first
solvability at each step of increasing the index k and at second numerical stability,
and there are instances where h must be chosen extremely small.

Podlubny [17] has applied this method successfully for solving with O(h) accuracy
(a) the fractional relaxation-oscillation equation, (b) the Bagley-Torvik equation of
an immersed plate, namely
(a) Dαy(t) +Ay(t) = f(t), t > 0 , A > 0 , 0 < α < 2 ,

with y(0+) = 0 in case 0 < α ≤ 1 , y(0+) = y′(0+) = 0 in case 1 < α < 2 ;
(b) Ay′′(t)+BD3/2y(t)+Cy(t) = f(t), t > 0 , A > 0 , with y(0+) = y′(0+) = 0 .

In these examples the special choice of initial conditions ensures sufficient smoothness
of transition at the origin t = 0 to the zero extension for negative argument.
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3. DISCRETIZED FRACTIONAL CALCULUS

For numerical treatment of fractional integral equations, in particular linear and
nonlinear Abel-type integral equations of first and second kind, but also of integro-
differential equations with fractional integral operators, it is important to have good
methods for approximating expressions

Jαu(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1 u(τ) dτ, t > 0, α > 0. (3.1)

We give a short description of Lubich’s basic ideas of discretized fractional calculus.
See his and his co-authors’ and colleagues’ papers [12] and [18-22] for description of
the theory and applications to linear and non-linear Abel type integral equations and
ordinary integro-differential equations. For applications to partial integro-differential
equations containing fractional integration operators we recommend to look into the
papers [23-26] by Sanz-Serna, López-Marcos, Xu-Da and Lubich.

The idea is to approximate (3.1) by a discrete convolution quadrature:

Jα
h u(t) = h

α
n∑

j=0

ωn−ju(jh) + hα
s∑

j=0

wnju(jh) , (3.2)

where t = nh, h > 0, n ∈ IN, s ∈ IN0, with appropriate convolution quadrature
weights ωk, k ≥ 0, and starting quadrature weights wnj , n ≥ 0, j = 0, 1, . . . , s, that
do not depend on h. The index s of summation is fixed. These methods can be
adjusted to yield higher orders of accuracy in contrast to the order 1 of the simple
Grünwald-Letnikov approach. However, this higher order must be paid by a lot of
work in calculating the coefficients ωk and wnj . For efficiency of these calculations
(for large values of n) Lubich and co-workers recommend to use the fast Fourier
transform.

The starting weights wnj are required to cope with the possibly singular behaviour
of the function u at the origin t = 0, and the character of this behaviour is crucially
used in calculating them. We here do not go into the details but refer the reader to
[12]. However, we describe the idea for finding the convolution quadrature weights
ωk.

The mathematical tool is the manipulation of power series of generating functions,
in generalizing analogy to their use in difference schemes for ordinary differential
equations (see [27]). We consider a linear multistep method for approximating

y(t) = Ju(t) =
∫ t

0

u(τ) dτ
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by values yn ≈ y(tn), with tn = nh, n = 0, 1, 2, . . .. Put un = uh(nh) for n ≥ 0,
un = 0 for n < 0, and let z symbolize the discrete backward shift operator:

zun = un−1 , zkun = un−k.

A general linear multistep method has, with αk 	= 0, the form

αkỹn + αk−1ỹn−1 + . . .+ α0ỹn−k = h{βkun + βk−1un−1 + . . .+ β0un−k}

with given coefficients αj , βj . With the formal polynomials

ρ̃(z) = αk + αk−1z + . . .+ α0z
k , σ̃(z) = βk + βk−1z + . . .+ β0z

k ,

and the formal rational function

ω(z) =
σ̃(z)
ρ̃(z)

symbolically
ρ̃(z)ỹn = hσ̃(z)un,

ỹn = hω(z)un.

In general,
ω(z) = ω0 + ω1z + ω2z

2 + ω3z
3 + . . .

comes out as a power series with infinitely many coefficients ωj different from zero.
And then

ỹn = h
∞∑

j=0

ωjun−j .

But only finitely many uk being nonvanishing, this series actually terminates with
upper summation index j = n. However, correction is required because u generally
does not have a smooth transition to its zero extension for negative argument. Hence
we take

yn = hω(z)un + correction terms.

The idea for approximation of Jαu(t) for arbitrary positive α is now to replace the
power series ω(z) by (ω(z))α, thus taking as approximations for Jαu(nh) the values

yn = hα(ω(z))αun + correction terms.

Lubich describes how appropriate correction terms can be determined in dependence
on the smoothness or non-smoothness of transition of the function u(t) at the origin
to its zero extension for negative argument t.
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He also develops the theory of consistency, stability and convergence in analogy to
that of linear multistep quadrature. In particular, he shows that the order of accuracy
of the relevant multistep method is also valid for the modification to the fractional
case. For this theory, the symbol z of the backward shift operator is treated as a
complex variable. We remark that the occurring power series have positive radius of
convergence.

Simple Examples

(a) The backward Euler method
From the approximation

ỹn = ỹn−1 + hun ≈ Ju(nh)
we take

(1− z)ỹn = hun ,

hence
ρ̃(z) = 1− z, σ̃(z) ≡ 1 ,

and

ω(z) =
1

1− z = (1− z)−1 =
∞∑

j=0

zj .

Consequently for approximation of Jαu(nh) we use

ỹn = hα(1− z)−αun = hα
∞∑

j=0

(−1)j
(−α
j

)
zjun = hα

[t/h]∑
j=0

(−1)j
(−α
j

)
un−j .

Observe the analogy to the Grünwald-Letnikov approximation for the fractional
derivative (α replaced by −α).
(b) The trapezoidal rule

From the approximation

ỹn − ỹn−1 =
h

2
(un + un−1) ≈ Ju(nh)

we take
(1− z)yn =

h

2
(1 + z)un ,

hence
ρ̃(z) = 1− z , σ̃(z) =

1
2
(1 + z) ω(z) =

1 + z
2(1− z) ,

and for approximation of Jαu(nh) we use

ỹn = hα

(
1 + z
2(1− z)

)α

un .
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4. OTHER METHODS AND EVALUATION OF MEASUREMENTS

As indicated in Section 1 there exists a vast literature on numerical methods
for Abel type integral equations, and we resist here the temptation to give a
comprehensive overview on these. Let us just mention product quadrature methods
and piecewise polynomial collocation methods on which one may find presentations
and references in [1] and [2]. Let us also mention the recent papers [28] by A.P. Orsi
on product integration and L. Blank [29] on a spline collocation method (for fractional
differential equations). Short surveys can also be found in [5] and [30].

Completely distinct from the methods described in this survey are methods
that make use of integral representations of functions of Mittag-Leffler type. Such
representations are very useful in analytically solving fractional differential or integral
equations with constant coefficients, and they are often obtainable via clever bending
of the path of integration in the Laplace transform inversion formula and using
the residue theorem. In particularly nice cases one then has the Laplace transform
of a non-negative (or non-positive) function superimposed by sinusoidal oscillatory
parts with exponentially decaying amplitudes. The latter can be calculated by
standard subroutines, and the Laplace transform integral also does not present serious
difficulties (due to the fast decrease of the integrand). The graphs of solutions in [31]
have been produced in this way.

Yet another method, applicable to calculate Mittag-Leffler functions of rational
index with small denominators, consists of using their representations in terms of
the incomplete gamma function (formulas can be found e.g. in [4]) for which also
subroutines are available.

In [5], [8] and [30] among other things the serious problem of ill-posedness of
Abel integral equation of first kind is discussed. When in such an equation the data
function is given by physical measurements, the noise in the measurement process
is often amplified to an unacceptable degree by a straightforward numerical solution
method, and methods of high order accuracy are worthless. In [5], [8] and [30] a
method of descriptive regularization is recommended and demonstrated to work well.
The trick is to combine a Gauss least squares fitting technique with taking account
of extra qualitative properties (like nonnegativity, monotonicity, or convexity) the
solution is known to possess.

The problem of using product integration methods for Abel integral equations
with special attention to possible nonsmoothness or even discontinuous solutions is
extensively treated and illustrated in Ch. Kutsche’s thesis [32].
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