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Summary

The velocity autocorrelation and the displacement variance of a Brownian
particle moving in an incompressible viscous fluid are calculated taking into account
the effects of added mass and both Stokes and Basset hydrodynamic forces. These
forces are known to describe the friction effects in a viscous fluid, respectively in
the steady state and in the transient state of the motion, in the limit of vanishing
Reynolds number.

The explicit expressions of these functions versus time are provided in terms
of Mittag-Leffler functions and compared with the respective ones for the classical
Brownian motion. The effect of added mass is only to modify the time scale, that
is the characteristic relaxation time induced by the Stokes force. The effect of the
Basset force, which is of hereditary type namely history-dependent, is to perturb
the white noise of the random force and change the decay character of the velocity
autocorrelation function from pure exponential to power law.

Furthermore, the displacement variance is shown to maintain, for sufficiently
long times, the linear behaviour which is typical of normal diffusion, with the same
diffusion coefficient of the classical case. However, for light particles, the Basset
history force induces a long retarding effect in the establishing of the linear behaviour,
allowing for a regime of fast anomalous diffusion.

KEY-WORDS: Diffusion, Brownian Motion, Basset Force, Fractional Calculus

PACS: 02.30.Qy, 05.40.+j, 47.15.Gf, 66.10.Cb
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Sommario

In questo rapporto si calcolano la autocorrelazione della velocità e la varianza
dello sopstamento per una particella Browniana che si muove in un fluido viscoso
incompressibile, prendendo in considerazione gli effetti di massa aggiunta e di
entrambe le forze idrodinamiche, di Stokes e di Basset. È noto che tali forze
descrivono l’attrito viscoso del fluido rispettivamente allo stato stazionario e durante
la fase transiente del moto, nel limite di numero di Reynolds tendente a zero.

Per queste quantità si forniscono le espressioni esplicite in funzione del tempo
tramite le funzioni speciali di Mittag-Leffler che vengono confrontate con quelle
corrispondenti al moto Browniano classico. L’effetto della massa aggiunta consiste
solo nell’alterazione della scala dei tempi, cioè il tempo di rilassamento caratteristico
della forza di Stokes. L’effetto della forza di Basset, che è di tipo ereditario, ossia
dipendente dalla storia, è di modificare il cosidetto ”rumore bianco” della forza
stocastica e di cambiare il carattere del decadimento della funzione di autocorrelazione
della velocità da una legge esponenziale ad una legge di potenza.

Si prova inoltre che la varianza dello spostamento mantiene, per tempi
sufficientemente lunghi, la crescita lineare che è tipica della diffusione normale, con lo
stesso coefficiente di diffusione del caso classico. Tuttavia, per particelle più leggere,
la forza di Basset induce un lungo effetto ritardante nello stabilire il comportamento
lineare, permettendo cośı un regime di diffusione anomala veloce.

PAROLE-CHIAVE: Diffusione, Moto Browniano, Forza di Basset, Calcolo Frazionario

PACS: 02.30.Qy, 05.40.+j, 47.15.Gf, 66.10.Cb
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1. Introduction

Since the pioneering computer experiments by Alder & Wainwright (1970), which
have shown that the velocity autocorrelation function for a Brownian particle in a
dense fluid goes asymptotically as t−3/2 instead of exponentially as predicted by
stochastic theory, many attempts have been made to reproduce this result by purely
theoretical arguments. Usually, hydrodynamic models are adopted to generalize
Stokes’ law for the frictional force and obtain a generalized Langevin equation, see e.g.
Zwanzig & Bixon (1970, 1975), Widom (1971), Case (1971), Mazo (1971), Ailwadi &
Berne (1971), Nelkin (1972), Hynes (1972), Chow & Hermans (1972-a,-b,-c), Hauge &
Martin-Löf (1973), Dufty (1974), Bedeaux & Mazur (1974), Hinch (1975), Pomeau
& Résibois (1975), Warner (1979), Reichl (1981), Paul & Pusey (1981), Felderhof
(1991), Clercx & Schram (1992).

Recently, a great interest on the subject matter has been raised because of the
possible connection among long-time correlation effects, (fractional) Brownian motion
and anomalous diffusion, see e.g. Muralidar et al. (1990), Wang and Lung (1990),
Wang (1992), Giona and Roman (1992).

We recall that anomalous diffusion is the phenomenon, usually met in disordered
or fractal media, according to which the mean squared displacement (the variance)
is no longer linear in time but proportional to a power α of time with 0 < α < 1
(slow diffusion) or 1 < α < 2 (fast diffusion), see e.g. Bouchaud & Georges (1990).

We also point out that Kubo (1966) introduced a generalized Langevin equation
(GLE), where the friction force appears retarded or frequency dependent through
an indefinite memory function. To be consistent with the fluctuation-dissipation
theorem, in GLE the random force is no longer a white noise (as in the classical
Langevin equation) with a frequency spectrum related to that of the velocity
fluctuations. A critical analysis of Kubo’s derivation of the fluctuation-dissipation
theorem was given by Felderhof (1978). As a matter of fact, the hydrodynamic
models appear as particular cases of GLE, as noted by Kubo et al. (1991).

In this report we shall revisit the Brownian motion on the basis of a generalized
Langevin equation of fractional order. The purpose of our approach is to model
the Brownian motion more realistically than the usual one based on the classical
Langevin equation, in that it takes into account not only the Stokes viscous drag but
also the retarding effects due to hydrodynamic backflow, i.e. the added mass and the
Basset-Boussinesq history force.
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The plan of the report is the following. After having reviewed in Section 2
the classical Brownian motion, in Section 3 we extend the theory according to the
hydrodynamic approach. On the basis of the fluctuation-dissipation theorem and of
the techniques of the fractional calculus we shall provide the analytical expressions of
the autocorrelation functions (both for the random force and the particle velocity) and
of the displacement variance. Consequently, the well-known results of the classical
theory of the Brownian motion will be properly generalized. Significant results are
shown and discussed in Section 4, where we shall point out different diffusion regimes.
Finally, conclusions are drawn in Section 5.

2. The classical approach to the Brownian motion

We assume that the Brownian particle of mass m executes a random motion in
one dimension with velocity V = V (t) and displacement X = X(t). The classical
approach to the Brownian motion is based on the following stochastic differential
equation (Langevin equation), see e.g. Kubo et al. (1991),

m
dV

dt
= Fv(t) + R(t) , (2.1)

where Fv(t) denotes the frictional force exerted from the fluid on the particle and
R(t) denotes the random force arising from rapid thermal fluctuations, subjected to
the condition 〈R(t) 〉 = 0 . As usual, we have denoted with brackets the average taken
over an ensemble in thermal equilibrium.

Assuming for the frictional force the Stokes expression for a drag of spherical
particle of radius a , we obtain the classical formula

Fv = − 1
µ
V (t) ,

1
µ

= 6π a ρf ν , (2.2)

where µ denotes the mobility coefficient and ρf and ν are the density and the
kinematic viscosity of the fluid, respectively. If we introduce the friction characteristic
time

σ = mµ , (2.3)

the Langevin equation (2.1) explicitly reads

dV

dt
= − 1

σ
V (t) +

1
m

R(t) . (2.4)



F. Mainardi and F. Tampieri 7

We assume that the Brownian particle has been kept for a sufficiently long time
in the fluid at (absolute) temperature T , so the thermal equilibrium is reached. Thus,
for any t0 in which the thermal equilibrium is maintained, the equipartition law for
the energy distribution requires that

m 〈V 2(t0) 〉 = k T , (2.5)

where k is the Boltzmann constant. Consistently, we assume that the autocorrelation
functions CV and CR of the stochastic processes V (t) and R(t) ,

CV (t0, t) = 〈V (t0)V (t0 + t) 〉 = CV (t) , t ≥ 0 , (2.6)

CR(t0, t) = 〈R(t0)R(t0 + t) 〉 = CR(t) , t ≥ 0 , (2.7)

do not depend on t0 , and that the random force is uncorrelated to the particle
velocity, namely

CV R(t0, t) = 〈V (t0)R(t0 + t) 〉 = 0 , t ≥ 0 . (2.8)

Hereafter we shall assume t0 = 0 .

Applying the Wiener-Khintchine theorem to (2.6-7), the power spectra or power
spectral densities IV (ω) and IR(ω) , ω ∈ IR , are provided by the Fourier transforms
of the respective autocorrelation functions. We write

IV (ω) = ĈV (ω) =
∫ +∞

−∞
CV (t) e−iω t dt , CV (t) =

1
2π

∫ +∞

−∞
IV (ω) e+iω t dω ,

(2.9)

IR(ω) = ĈR(ω) =
∫ +∞

−∞
CR(t) e−iω t dt , CR(t) =

1
2π

∫ +∞

−∞
IR(ω) e+iω t dω .

(2.10)
It is well known, see e.g. Kubo et al. (1991), that the previous assumptions lead to

CV (t) = 〈V 2(0) 〉 e−t/σ =
k T

m
e−t/σ , (2.11)

CR(t) =
m2

σ
〈V 2(0) 〉 δ(t) =

m

σ
k T δ(t) , (2.12)

where δ(t) denotes the Dirac distribution. The result (2.11) shows that the velocity
autocorrelation function decays exponentially in time with the decay constant σ ,

while (2.12) means that the power spectrum of R(t) is to be white, i.e. independent
on frequency, resulting

IR(ω) ≡ IR =
m

σ
k T . (2.13)
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It can be readily shown that the mean squared displacement of a particle starting
at the origin at t0 = 0 (displacement variance) is given by

〈X2(t) 〉 = 2
∫ t

0

(t− τ)CV (τ) dτ = 2
∫ t

0

dτ1

∫ τ1

0

CV (τ) dτ , t ≥ 0 . (2.14)

For this it is sufficient to recall that X(t) =
∫ t

0
V (t′) dt′ , and to use the definition

(2.6) of CV (t) for t ≥ t0 = 0 . As a consequence of (2.11) and (2.14) we obtain

〈X2(t) 〉 = 2D
[
t− σ

(
1 − e−t/σ

) ]
, t ≥ 0 , (2.15)

where
D = σ 〈V 2(0) 〉 =

∫ ∞

0

CV (t) dt . (2.16)

We note from (2.15) that

〈X2(t) 〉 = 2D t
[
1 − (t/σ)−1 +EST

]
, as t → ∞ , (2.17)

(EST = exponentially small terms) so that

D = lim
t→∞

〈X2(t) 〉
2 t

. (2.18)

Furthermore, using (2.3), (2.5) and (2.16), we recognize that

D =
σ

m
k T = µ k T . (2.19)

The constant D is known as the diffusion coefficient and the equation (2.19) as the
Einstein relation.

3. The hydrodynamic approach to the Brownian Motion

On the basis of hydrodynamics, the Langevin equation (2.4) is not all correct,
since it ignores the effects of the added mass and retarded viscous force, which are
due to the acceleration of the particle, as pointed out by several authors.

The added mass effect requires to substitute the mass of the particle with the
so-called effective mass, me = m [1 + ρf/(2ρp)] , where ρp denotes the density of the
particle, see e.g. Batchelor (1967). Keeping unmodified the Stokes drag law, the
relaxation time changes from σ = mµ to σe = me µ : thus

σe = σ

(
1 +

1
2χ

)
, with χ =

ρp

ρf
. (3.1)
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The corresponding Langevin equation has the form as (2.4), by replacing m with me

and σ with σe . With respect to the classical analysis, it turns out that the added
mass effect, if it were present alone, would be only to lengthen the time scale (σe > σ )
in the exponentials entering the basic formulas (2.11) and (2.15) and to decrease the
velocity variance 〈V 2(0)〉 , consistently with the energy equipartition law (2.5) at the
same temperature. Consequently, using (3.1), the diffusion coefficient is unmodified
and turns out to be

D = σe 〈V 2(0)〉 = µ k T , (3.2)

so the Einstein relation (2.19) still holds.

The retarded viscous force effect is due to an additional term to the Stokes drag,
which is related to the history of the particle acceleration. This additional drag force,
proposed by Basset and Boussinesq in earlier times, and nowadays referred to as the
Basset history force, see e.g. Maxey & Riley (1983), reads (in our notation)

FB
v = − 1

µ

√
τ0
π

∫ t

t∗

dV (τ)/dτ√
t− τ

dτ , τ0 =
a2

ν
, t > t∗ ≥ −∞ . (3.3)

We suggest to interpret the Basset force in the framework of the fractional
calculus. In this respect, taking t∗ = 0 , we write

1√
π

∫ t

0

dV (τ)/dτ√
t− τ

dτ =
d1/2

dt1/2
V (t) , (3.4)

where d1/2/dt1/2 denotes the fractional derivative of order 1/2 (in the Caputo sense),
see for details Caputo (1967, 1969), Caputo & Mainardi (1971), Mainardi (1996,
1997), Gorenflo & Mainardi (1997) and Podlubny (1999). This definition of fractional
derivative differs from the standard one (in the Riemann-Liouville sense) available
in classical textbooks on fractional calculus, see e.g. Oldham & Spanier (1974), Ross
(1975), Samko et al. (1993) and Miller & Ross (1993). In fact, if f(t) denotes a
causal function (sufficiently well-behaved) and 0 < α < 1 we have(

dα

dtα

)
RL

[f(t)] =
1

Γ(1 − α)
d

dt

∫ t

0

f(τ)
(t− τ)α

dτ ,(
dα

dtα

)
C

[f(t)] =
1

Γ(1 − α)

∫ t

0

d f(τ)/dτ
(t− τ)α

dτ ,

(3.5)

where Γ denotes the Gamma function, and the suffices RL and C refer to Riemann-
Liouville and to Caputo, respectively. Recalling the Riemann-Liouville fractional
derivative of the power function(

dα

dtα

)
RL

[tγ ] =
Γ(γ + 1)

Γ(γ + 1 − α)
tγ−α , γ > −1 , t > 0 , (3.6)
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we obtain (
dα

dtα

)
RL

[
f(t)− f(0+)

]
=

(
dα

dtα

)
C

[f(t)] . (3.7)

Then, using (2.4), (3.1) and (3.3-4), the Langevin equation turns out to be

dV

dt
= − 1

σe

[
1 +

√
τ0

d1/2

dt1/2

]
V (t) +

1
me

R(t) , (3.8)

where the suffix C is understood in the fractional derivative. We agree to refer to
(3.8) as to the fractional Langevin equation.

It is worth noting that if the process is meant to be in thermodynamic equilibrium
(at t0 = 0), we should account for the hydrodynamic interaction long memory, and
thus it is correct to integrate the Langevin equation (3.8) from t∗ = −∞ . Basing
on the observations by Dufty (1974) and Felderhof (1978), we introduce in (3.8) the
random force

R∗(t) = R(t)− 1
µ

√
τ0
π

∫ 0

−∞

dV (τ)/dτ√
t− τ

dτ , (3.9)

In view of the fluctuation-dissipation theorem, Kubo (1966) considered a
generalized Langevin equation (GLE), introducing a memory function γ(t) to
represent a generic retarded effect for the friction force. In our case Kubo’s GLE
reads (in our notation)

dV

dt
= −

∫ t

0

γ(t− τ)V (τ) dτ +
1
me

R∗(t) , (3.10)

where R∗(t) = R(t)−me

∫ 0

−∞ γ(t− τ)V (τ) dτ .

For the sake of convenience, from now on we shall drop the suffix ∗ in the
Langevin equations. Basing on the fundamental hypothesis (2.8). i.e. 〈V (0)R(t) 〉 =
0 , t > 0 , and using the Laplace transform,

f(t)÷ f(s) =
∫ ∞

0

e−st f(t) dt , s ∈ C

(where the sign ÷ denotes the juxtaposition of a function depending on t with its
Laplace transform depending on s ), the fluctuation-dissipation theorem is readily
expressed, according to Mainardi & Pironi (1996), as

CV (s) = 〈V (0)V (t) 〉 =
〈V 2(0) 〉
s + γ(s)

, (3.11)

CR(s) = 〈R(0)R(t) 〉 = m2
e 〈V 2(0) 〉 γ(s) . (3.12)

For the proof of (3.11-12) see Appendix A. The classical results are easily recovered
for t > 0 noting that, in the absence of added mass and history effects, we get
γ(s) = 1/σ ÷ γ(t) = δ(t)/σ .
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For our fractional Langevin equation (3.8), we note that

γ(s) =
1
σe

[
1 +

√
τ0 s

1/2
]
÷ γ(t) =

1
σe

[
δ(t) −√

τ0
t−3/2

2
√
π

Θ(t)
]
, (3.13)

where Θ(t) is the Heaviside step function. Therefore the expression for γ(t) turns out
to be defined only in the sense of distributions. Specifically, δ(t) is the well-known
Dirac delta function and t−3/2 Θ(t) is the linear functional over test functions, φ(t) ,
such that

〈 t−3/2 Θ(t) , φ(t)〉 =
∫ ∞

0

[φ(t) − φ(0)]
t3/2

dt .

For more details on distributions, see e.g. Gel’fand & Shilov (1964) or Zemanian
(1965).

The significant change with respect to the classical case results from the t−3/2

term. Not only does it imply a noninstantaneous relationship between the force and
the velocity, but also it is a slowly decreasing function so that the force is effectively
related to the velocity over a large time interval. The representation of the force in
terms of distributions, as required by the GLE, is not strictly necessary since we can
use the equivalent fractional form.

Let us now consider the correlation for the random force. The inversion of the
Laplace transform CR(s) yields, using (3.12-13),

CR(t) =
m2

e

σe
〈V 2(0) 〉

[
δ(t)−√

τ0
t−3/2

2
√
π

Θ(t)
]
, (3.14)

Thus, from the comparison with the classical result (2.12), we recognize that, in the
presence of the history force, the random force cannot be longer represented uniquely
by a white noise; an additional ”fractional” or ”coloured” noise is present due to the
term t−3/2 which, as formerly noted by Case (1971), is to be interpreted in the
generalized sense of distributions.

Let us now consider the velocity autocorrelation. Inserting (3.13) in (3.11), it
turns out

CV (s) =
〈V 2(0) 〉

s +
[
1 +

√
τ0 s1/2

]
/σe

=
〈V 2(0) 〉

s +
√

β/σe s1/2 + 1/σe

, (3.15)

where, because of (2.2-3) and (3.1), (3.3),

β =
τ0
σe

=
9

2χ+ 1
=

9ρf

2ρp + ρf
. (3.16)
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We note from (3.16) that 0 < β < 9, the limiting cases occurring for χ = ∞ and
χ = 0, respectively. We also recognize that the effect of the Basset force is expected
to be negligible for β → 0 , i.e. for particles which are sufficiently heavy with respect
to the fluid (ρp � ρf ). In this case we can assume the validity of the classical result
(2.11).

Applying in (3.15) the asymptotic theorem for Laplace transform as s → 0 , see
e.g. Doetsch (1974), we get as t → ∞ ,

CV (t) ∼ 〈V 2(0) 〉
√

β/(4π) (t/σe)
−3/2

, t → ∞ . (3.17)

The presence of such a long-time tail was observed by Alder & Wainwright (1970) in
a computer simulation of velocity correlation functions. Furthermore, from (3.15) it
is easy to obtain the following results

CV (0) = lim
s→∞ sCV (s) = 〈V 2(0) 〉 ,

∫ ∞

0

CV (t) dt = CV (0) = σe 〈V 2(0) 〉 . (3.18)

The explicit inversion of the Laplace transform in (3.15) can be obtained basing on
Appendix B, see also Mainardi et al. (1995), Mainardi (1997), and reads

CV (t)
〈V 2(0) 〉 =


a+ E1/2(a+

√
t) − a−E1/2(a−

√
t)

a+ − a−
, a± =

−√
β ± (β − 4)1/2

2
√
σe

,

E1/2(a
√
t)

[
1 + 2 a2 t

]
+ 2 a

√
t/π , a = − 1√

σe
(β = 4) ,

(3.19)
where

E1/2(a
√
t) =

∞∑
n=0

an tn/2

Γ(n/2 + 1)
= ea

2 t erfc(−a
√
t) (3.20)

denotes the Mittag-Leffler function of order 1/2 and erfc the complementary error
function. For properties of the Mittag-Leffler function we refer the reader to Erdélyi
(1955) and Gorenflo & Mainardi (1997).

Let us now consider the displacement variance, which is provided by (2.14). From
the Laplace transform 〈X2(s) 〉 = 2CV (s)/s2 , we derive the asymptotic behaviour
of 〈X2(t) 〉 as t → ∞ , which reads

〈X2(t) 〉 = 2D t
{
1 − 2

√
β/π (t/σe)−1/2 + O

[
(t/σe)−1

]}
, t → ∞ , (3.21)

where D is the diffusion coefficient (3.2). The explicit expression of the displacement
variance turns out to be, taking β �= 4 ,

〈X2(t) 〉 = 2D

{
t− 2

√
βσe t

π
+

a3
+ [1 − E1/2(a−

√
t)]− a3

− [1− E1/2(a+

√
t)]

(a+ − a−) (a+ a−)2

}
.

(3.22)
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Thus, the displacement variance is proved to maintain, for sufficiently long times,
the linear behaviour which is typical of normal diffusion (with the same diffusion
coefficient of the classical case). However, the Basset history force, which is
responsible of the algebraic decay of the velocity correlation function, induces a
retarding effect (∝ t1/2) in the establishing of the linear behaviour.

As we shall see in the next section, the Basset retarding effect is more relevant
when the parameter β introduced in (3.16) is big enough, namely when χ = ρp/ρf is
sufficiently small.

4. Numerical results and discussion

In order to get a physical insight of the effect of the Basset history force we exhibit
some plots concerning the velocity autocorrelation (3.19) and the displacement
variance (3.22), for some values of the characteristic parameter χ = ρp/ρf .

We now agree to take non-dimensional quantities, by scaling the time with
the decay constant σ of the classical Brownian motion and the displacement with
the diffusive scale (Dσ)1/2 . With these scales the asymptotic equation for the
displacement variance reads 〈X2(t) 〉 ∼ 2 t .

In Figs 1 and 2 we consider the velocity autocorrelation normalized with its initial
value 〈V 2(0) 〉 and the displacement variance normalized with its asymptotic value
2 t , assuming χ = 0.1 , 0.5 , 1 , 2 . We compare versus time the functions CV and
〈X2 〉/(2t) provided by our full hydrodynamic approach (added mass and Basset
force), in continuous line, with the corresponding ones, provided by the classical
analysis, in dashed line, and by the only effect of the added mass, in dotted line. For
large times we also exhibit the asymptotic estimations (3.17) and (3.21), in dotted
line, in order to recognize their range of validity.

The correlation plots exhibit the well-known algebraic tail. The time necessary
to reach the asymptotic behaviour increases as the density ratio χ decreases. By
comparing the two figures, it appears that the variance approaches the asymptotic
regime as the autocorrelation becomes sufficiently small, independently on its time
dependence. In the time interval necessary to reach the asymptotic behaviour the
displacement variance exhibits a marked deviation from the standard diffusion.

Because this time interval turns out to be orders of magnitude longer than the
classical one, it appears relevant to discuss about various diffusion regimes.
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Fig. 1. The velocity autocorrelation versus time for χ = 0.1 , 0.5 , 1. , 2. :
full hydrodynamic — ; added mass · · · ; classical −−− .
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Fig. 2. The displacement variance versus time for χ = 0.1 , 0.5 , 1. , 2. :
full hydrodynamic — ; added mass . . . ; classical −−− .
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In order to characterize these regimes, we consider a time interval (say two
decades) starting when the classical analysis foresees the establishment of the
asymptotic linear behaviour for the displacement variance, and we look a law of
anomalous diffusion 〈X2(t) 〉 ∼ 2 a tα . Evaluating the parameters of the anomalous
diffusion, a and α , with a best fit based on the least squared method, we find
0 < a < 1 and 1 < α < 2 . It results that this law can well approximate the
exact behaviour provided by the full hydrodynamic model (3.22) in the selected time
range.

We recognize a regime of fast anomalous diffusion; in particular, the diffusion is
faster as χ is smaller, with parameters a → 0+ and α → 2− as χ → 0+ . Of course,
the normal diffusion is recovered as χ → ∞ , since a → 1− and α → 1+ , and the
anomalous effect is significant only for χ < 1 .

For increasing values of χ, i.e. χ = 0.01 , 0.05 , 0.1 , 0.5 , we show in Fig. 3 the
function 〈X2〉/2 corresponding either to our analysis in continuous line (below), or to
the classical analysis in dashed line (above). While the classical curve is practically
coincident with the linear one, in dotted line, our curve is fitted with a power-law
curve, in dashed line, with an exponent α > 1 .

The best fit values of a and α are reported both in Fig. 3 and in Table I. We
recognize that as χ increases the values of a and α increase and decrease, respectively.

χ a α

0.001 0.023 1.47
0.05 0.094 1.31

0.1 0.15 1.25

0.5 0.35 1.14

Table I

The best fit values of a and α for increasing values of χ .

We note that, in the time range where the diffusion shows the anomalous
behaviour, the displacement variance reads in dimensional quantities as

〈X2(t) 〉 ∼ 2Da t
α , Da = aDσ1−α ; 0 < a < 1 , 1 < α < 2 . (4.1)
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Fig. 3. The displacement variance at large times for χ = 0.001 , 0.005 , 0.01 , 0.05 ;
full hydrodynamic: regime of anomalous diffusion (below),

classical: regime of normal diffusion (above).



18 Diffusion regimes in Brownian motion induced by the Basset history force

5. Conclusions

We can summarize our analysis of the Brownian motion based on the
hydrodynamic model as follows.

The random force is shown to be represented by a superposition of the usual
white noise with a ”fractional” noise.

The velocity autocorrelation function CV (t) is no longer expressed by a simple
exponential but by a combination of Mittag-Leffler functions of order 1/2. As a
consequence, one can recognize for CV (t) a slower decay, proportional to t−3/2 as
t → ∞ , which indeed is more realistic.

Finally, the displacement variance is shown to maintain, for sufficiently long
times, the linear behaviour which is typical of normal diffusion, with the same
diffusion coefficient D of the classical case, i.e. 〈X2(t) 〉 ∼ 2D t . However, the Basset
history force, which is responsible of the algebraic decay of the velocity correlation
function, induces a retarding effect in the establishing of the linear behaviour.

The above effect is seen to be evident for ”light” Brownian particles, i.e. less
dense than the fluid. In these cases, if one considers the variance versus time in
the interval corresponding to the establishment of the classical linear behaviour, a
best fit is obtained with the law 〈X2(t) 〉 ∼ 2Da t

α , where Da is a sort of effective
coefficient of anomalous diffusion with exponent 1 < α < 2 . Thus, the characteristic
exponent being greater than 1, the resulting effect appears such as a manifestation of
fast anomalous diffusion. Less dense are the Brownian particles with respect to the
fluid, greater is the exponent α, i.e. faster is the diffusion, where α → 2 as ρp → 0 .

In conclusion, if an observer investigates the time evolution of a cloud of light
Brownian particles, he recognizes that the normal diffusion is preceeded by a regime
of fast anomalous diffusion, which lasts for long time. If the observation interval is
not sufficiently long, he may be induced to trust in the occurring of fast anomalous
diffusion.
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Appendix A

Let us consider the generalized Langevin equation (3.10), that we write as

R(t) = me

[
V̇ (t) + γ(t) ∗ V (t)

]
, (A.1)

where · denotes time differentiation and ∗ time convolution. The assumption of
stationarity for the stochastic processes along with the following hypothesis

〈R(t) 〉 = 0 , 〈V (0)R(t) 〉 = 0 , t > 0 , (A.2)

allows us to derive, by using the Laplace transforms, the two fluctuation-dissipation
theorems

CV (s) := 〈V (0)V (t) 〉 =
〈V 2(0) 〉
s + γ(s)

, (A.3)

and
CR(s) := 〈R(0)R(t) 〉 = m2

e 〈V 2(0) 〉 γ(s) . (A.4)

Our derivation is alternative to the original one by Kubo (1966) who used Fourier
transforms; furthermore, it appears useful for the treatment of our fractional Langevin
equation.

Multiplying both sides of (A.1) by V (0) and averaging, we obtain

〈V (0) V̇ (t) 〉+ γ(t) ∗ 〈V (0)V (t) 〉 = 0 . (A.5)

The application of the Laplace transform to both sides of (A.5) yields

s 〈V (0)V (t) 〉 − 〈V 2(0) 〉 + γ(s) 〈V (0)V (t) 〉 = 0 , (A.6)

from which we just obtain (A.3).

Multiplying both sides of (A.1) by R(0) and averaging, we obtain

CR(t) := 〈R(0)R(t) 〉 = m2
e

[
〈 V̇ (0) V̇ (t) 〉+ γ(t) ∗ 〈 V̇ (0)V (t) 〉

]
. (A.7)

Noting that, by the stationary condition,

〈 V̇ (0)V (0) 〉 = 0 , 〈 V̇ (0)V (t) 〉 = −〈V (0) V̇ (t) 〉 , (A.8)

the application of the Laplace transform to both sides of (A.7) yields

CR(s) = m2
e

{
s 〈 V̇ (0)V (t) 〉 − γ(s)

[
s 〈V (0)V (t) 〉 − 〈V 2(0) 〉

]}
. (A.9)

Since

〈 V̇ (0)V (t) 〉 = −〈V (0) V̇ (t) 〉 = −s 〈V (0)V (t) 〉+ 〈V 2(0) 〉 , (A.10)

we get

CR(s) = m2
e

{
s

[−sCV (s) + 〈V 2(0) 〉 − γ(s)CV (s)
]
+ γ(s) 〈V 2(0) 〉} , (A.11)

from which, accounting for (A.3), we just obtain (A.4).
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Appendix B

In this Appendix we report the detailed manipulations necessary to obtain the
result (3.19) as Laplace inversion of (3.15). For this purpose we need to consider the
Laplace transform

N(s) =
1

s+ b s1/2 + 1
, b =

√
β , (B.1)

and recognize that

CV (t)
〈V 2(0) 〉 = N(t/σe) ÷ σe N(σe s) =

1
s +

√
β/σe s1/2 + 1/σe

, (B.2)

where we have used the sign ÷ for the juxtaposition of a function depending on t with
its Laplace transform depending on s . The required result is obtained by expanding
N(s) into partial fractions and then inverting. Considering the two roots λ± of the
polynomial P (z) ≡ z2 + b z+1 with z = s1/2 , we must treat separately the following
two cases: i) 0 < b < 2 , or 2 < b < 3 , and ii) b = 2 , which correspond to two
distinct roots (λ+ �= λ−), or two coincident roots (λ+ ≡ λ− = −1), respectively. We
obtain

i) b �= 2 ⇐⇒ β �= 4 , χ �= 5/8 ,

N(s) =
1

s+ b s1/2 + 1
=

A+

s1/2 (s1/2 − λ+)
− A−

s1/2 (s1/2 − λ−)
, (B.3)

with

λ± =
−b± (b2 − 4)1/2

2
=

1
λ∓

, A± =
λ±

λ+ − λ−
; (B.4)

ii) b = 2 ⇐⇒ β = 4 , χ = 5/8 ,

N(s) =
1

s+ 2 s1/2 + 1
=

1
(s1/2 + 1)2

. (B.5)

The Laplace inversion of (B.3) and (B.5) turns out, see below,

N(t) =

{
i) A+ E1/2 (λ+

√
t) −A− E1/2 (λ−

√
t) ,

ii) (1 + 2t)E1/2 (−√
t) − 2

√
t/π ,

(B.6)

where

E1/2(λ
√
t) =

∞∑
n=0

λn tn/2

Γ(n/2 + 1)
= eλ

2 t erfc(−λ
√
t) (B.7)

denotes the Mittag-Leffler function of order 1/2 and erfc denotes the complementary
error function. In view of (B.1-2), equation (B.6) is equivalent to (3.19).
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Let us first recall the essentials of the generic Mittag-Leffler function in the
framework of the Laplace transforms. The Mittag-Leffler function Eα(z) with α > 0 ,
so named from the great Swedish mathematician who introduced it at the beginning
of this century, is defined by the following series representation, valid in the whole
complex plane,

Eα(z) =
∞∑

n=0

zn

Γ(αn + 1)
, α > 0 , z ∈ C . (B.8)

It turns out that Eα(z) is an entire function, of order ρ = 1/α and type 1 , which
provides a generalization of the exponential function.

The Mittag-Leffler function is connected to the Laplace integral through the
equation ∫ ∞

0

e−u Eα (uα z) du =
1

1 − z
, α > 0 . (B.9)

This integral is fundamental in the evaluation of the Laplace transform of Eα (λ tα)
with λ ∈ C and t ≥ 0 . Putting in (B.9) u = st and uα z = λ tα , we get the following
Laplace transform pair

Eα (λ tα)÷ sα−1

sα − λ
, Re s > |λ|1/α . (B.10)

We note that, up to our knowledge, in the handbooks containing tables for the Laplace
transforms, the Mittag-Leffler function is ignored so that the transform pair (B.10)
does not appear if not in the special case α = 1/2 . In fact, in this case we recover
from (B.10) the basic Laplace transform pair

1
s1/2 (s1/2 − λ)

÷ E1/2(λ
√
t) , (B.11)

where the Mittag-Leffler function can be expressed in terms of known functions, as
shown in (B.7). As an exercise we can derive from (B.11) the following transform
pairs and consequently the result (B.6):

1
s1/2 − λ

=
1

s1/2
+

λ

s1/2 (s1/2 − λ)
÷ 1√

π t
+ λE1/2(λ

√
t) , (B.12)

1
s1/2 (s1/2 − λ)2

= −2
d

ds

(
1

s1/2 − λ

)
÷ 2

√
t

π
+ 2λ tE1/2(λ

√
t) , (B.13)

1
(s1/2 − λ)2

=
1

s1/2 (s1/2 − λ)
+

λ

s1/2 (s1/2 − λ)2

÷ 2λ

√
t

π
+ (1 + 2λ2 t)E1/2(λ

√
t) .

(B.14)
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– M. Caputo, Elasticità e Dissipazione, Zanichelli, Bologna, 1969. [in Italian]

– M. Caputo and F. Mainardi, ”Linear models of dissipation in anelastic solids”,
Riv. Nuovo Cimento (Ser. II), 1, 161–198 (1971).

– K.M. Case, ”Velocity Fluctuations of a Body in a Fluid”, Phys. Fluids, 14
(1971), 2091-2095.

– Y.S. Chow and J.J. Hermans, ”Effect of Inertia on the Brownian Motion of Rigid
Particles in a Viscous Fluid”, J. Chem. Phys., 56 (1972-a), 3150-3154.

– Y.S. Chow and J.J. Hermans, ”Autocorrelation Functions for a Brownian
Particle”, J. Chem. Phys., 57 (1972-b), 1799-1800.

– Y.S. Chow and J.J. Hermans, ”Brownian Motion of a Spherical Particle in a
Compressible Fluid”, Physica, 65 (1972-c), 156-162.

– H.J.H. Clercx and P.P.J.M. Schram, ”Brownian Particles in Shear Flow and
Harmonic Potentials: A Study of Long-Time Tails”, Phys. Rev. A 46 (1992),
1942-1950.

– G. Doetsch, Introduction to the Theory and Application of the Laplace
Transformation, Springer Verlag, Berlin, 1974.



F. Mainardi and F. Tampieri 23

– J.W. Dufty, ”Gaussian Model for Fluctuation of a Brownian Particle”, Phys.
Fluids, 17 (1974), 328-333.
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