Open problem: simulation of Havriliak-Negami models

Experiments have shown that electric polarization in inhomogeneous materials, such as biological tissues, follows non–standard laws of Havriliak–Negami type

$$Y(s) = H(s) * F(s)$$
 $H(s) = \frac{1}{(s^{\alpha} + \lambda)^{\gamma}}$

Important applications: description of interactions between electromagnetic waves and biological bodies (e.g., treatment and diagnosis of tumors)

In the time–domain Havriliak–Negami models are represented by means of a new pseudo–fractional differential operator

$$\left({}_{0}D_{t}^{\alpha}+\lambda\right)^{\gamma}y(t)=f(t)$$

and different definitions have been proposed for this operator, see [Nigmatullin and Ryabov, *Physics Solid State*, 1997] and [Novikov et al., *Mater. Sci. Poland*, 2005]

A challenging computational problem: device and study convolution quadratures, for the numerical discretization of the differential operator $\left({}_{0}D_{t}^{\alpha}+\lambda\right)^{\gamma}$, in the form

$$y_n = \sum_{j=0}^n \omega_{n-j}(\boldsymbol{\alpha}, \boldsymbol{\gamma}, \lambda) f_j$$