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A class of self-similar stochastic processes with stationary
increments to model anomalous diffusion in physics
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In this paper, we present a general mathematical construction that allows us to define a parametric class
of H -sssi stochastic processes (self-similar with stationary increments), which have marginal probability
density function that evolves in time according to a partial integro-differential equation of fractional type.
This construction is based on the theory of finite measures on functional spaces. Since the variance evolves
in time as a power function, these H -sssi processes naturally provide models for slow- and fast-anomalous
diffusion. Such a class includes, as particular cases, fractional Brownian motion, grey Brownian motion
and Brownian motion.

Keywords: non-Markovian self-similar processes; grey noise; fractional derivatives and integrals;
anomalous diffusion; fractional Brownian motion; Mittag-Leffler function

AMS Subject Classification: 26A33; 33E12; 33C60; 44A10, 45K05; 60G18

1. Introduction

The grey noise theory introduced by Schneider (see [16,17]) leads naturally to a class of self-similar
stochastic processes {Bβ(t), 0 < β ≤ 1}. These processes, called grey Brownian motion, provide
stochastic models for the slow-anomalous diffusion1 described by the time-fractional diffusion
equation; i.e. the marginal density function of the grey Brownian motion is the fundamental
solution of the time-fractional diffusion equation (see [6,7,18]). This will be extended to a class
{Bα,β(t)}, with 0 < α < 2, 0 < β ≤ 1, called ‘generalized’grey Brownian motion, which includes
stochastic models either for slow or fast-anomalous diffusion. First, we present and motivate the
mathematical construction. Then, we show that this class is made up of H -sssi processes and
contain either Gaussian or non-Gaussian processes (like fractional Brownian motion and grey
Brownian motion). Finally, we show how the time evolution of the marginal density function is
described by partial integro-differential equations of fractional type.

We begin introducing some basic concepts and facts. Let X be a vector space over a K-field
and let {‖ · ‖p, p ∈ I } be a countable family of Hilbert norms defined on it. The space X along
with the Hilbert norms {‖ · ‖p, p ∈ I } is called a topological vector space if it carries as natural
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topology the initial topology2 of the norms and the vector space operations. We indicate with Xp

the completion of X with respect to the norm ‖ · ‖p. Let 〈·, ·〉 denotes the natural bilinear pairing
between X and its dual space X′. We equip X′ with the so-called weak topology, which is the
coarsest topology such that the functional 〈·, x〉 is continuous for any x ∈ X.

Definition 1.1 (Nuclear space) A topological vector space X, with the topology defined by a
family of Hilbert norms, is said a nuclear space if for any Hilbert norm ‖ · ‖p there exists a larger
norm ‖ · ‖q such that the inclusion map Xq ↪→ Xp is an Hilbert–Schmidt operator3.

Nuclear spaces have many of the good properties of the finite-dimensional Euclidean spaces
Rd . For example, a subset of a nuclear space is compact if and only if is bounded and closed.
Moreover, spaces whose elements are ‘smooth’ in some sense tend to be nuclear spaces. In the
following example, we see how nuclear spaces could be constructed naturally starting from an
Hilbert space and an operator (see [5]).

Example 1.1 Let H be an Hilbert space and A an operator defined on it. Suppose that there
exists an orthonormal bases {hn, n = 1, 2, . . .} satisfying the following properties:

(1) They are eigenvectors of A; i.e. for any n > 0: Ahn = λnhn, λn ∈ R.
(2) {λn}n>0 is a non-decreasing sequence such that: 1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.
(3) There exists a positive integer a such that

∑∞
n=1 λ−a

n < ∞.

For any non-negative rational number p ∈ Q+, we define a sequence of norms {‖ · ‖p, p ∈ Q+}
such that: ‖ξ‖p = ‖Apξ‖, ξ ∈ H . That is,

‖ξ‖p =
( ∞∑

n=1

λ2p
n (ξ, hn)

2

)1/2

, (1)

where (·, ·) indicates the H -inner product.

Remark 1.1 For any p ∈ Q+, the norm ‖ · ‖p is an Hilbert norm. Indeed, it comes from the
scalar product:

(ξ, η)p =
∞∑

n=1

λ2p
n (ξ, hn)(η, hn). (2)

For any p ∈ Q+ we define: Xp = {ξ ∈ H ; ‖ξ‖p < ∞}. In view of the above remark, Xp is an
Hilbert space. Moreover, it is easy to see that for any p ≥ q ≥ 0:

Xp ⊂ Xq. (3)

We have the following proposition:

Proposition 1.1 For any p ∈ Q+, the inclusion map Xp+a/2 ↪→ Xp is an Hilbert–Schmidt
operator.
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Proof We set h
p
n = 1/λ

p
nhn. The collection {hp

n , n = 1, 2, . . .} is an orthonormal bases of Xp.
In fact, for any positive integers n and m:

(hp
n , hp

m)p =
∞∑

k=1

λ
p

k (hp
n , hk)(h

p
m, hk) =

∞∑
k=1

λ
2p

k

λ
p
nλ

p
m

δnkδmk = δnm.

For each ξ ∈ Xp+a/2, we indicate with i(ξ) = ξ ∈ Xp the inclusion map. Therefore, for any
n > 0:

i(hp+a/2
n ) = hp+a/2

n = 1

λ
p+a/2
n

λp
nhp

n = λ−a/2hp
n ,

and thus by hypothesis
∞∑

n=1

‖i(hp+a/2
n )‖2

p =
∞∑

n=1

λ−a
n < ∞.

�

Consider the vector space X = ⋂
p∈Q+ Xp. In view of the above proposition, X along with the

family of Hilbert norms {‖ · ‖p, p ∈ Q+} is a nuclear space.
Let X be a vector space. A continuous map 	 : X → C is called a characteristic functional on

X if it is normalized:

	(0) = 1,

and positive defined:
m∑

i,j=1

ci	(ξi − ξj )cj ≥ 0, m ∈ Z, {ci}i=1,...,m ∈ C, {ξi}i=1,...,m ∈ X.

Let X = Rn. The Bochner theorem [15] states that for any characteristic functional 	 defined on
Rn, there exists a unique probability measure μ defined on Rn, such that∫

Rn

ei(x,ξ) dμ(x) = 	(ξ), ξ ∈ Rn.

Let now X be a topological vector space. In the characterization of typical configurations of
measures on infinite-dimensional spaces, the so-called Minlos theorem plays a very important
role. This theorem is an infinite-dimensional generalization of the Bochner theorem:

Theorem 1.3 [Minlos theorem] Let X be a nuclear space. For any characteristic functional
	 defined on X there exists a unique probability measure μ defined on the measurable space
(X′, B), where B is regarded as the Borel σ -algebra generated by the weak topology on X′, such
that: ∫

X′
ei〈ω,ξ〉 dμ(ω) = 	(ξ), ξ ∈ X. (4)

Characteristic functional on Hilbert spaces can be defined starting from completely monotonic
functions4. In fact, we have the following proposition:

Proposition 1.2 Let F be a completely monotonic function defined on the positive real line.
Therefore, there exists a unique characteristic functional 	, defined on a real separable Hilbert
space H , such that:

	(ξ) = F(‖ξ‖2), ξ ∈ H.

This is obvious because completely monotonic functions are associated to non-negative measure
defined on the positive real line (see [1]). The converse is also true (see [16,17]).
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2. White noise

Consider the Schwartz space S(R). Equip S(R) with the usual scalar product

(ξ, η) =
∫

R

dtξ(t)η(t), ξ, η ∈ S(R). (5)

We indicate the completion of S(R) with respect to Equation (5) with S0(R) = L2(R). We
consider the orthonormal system {hn}n≥0 of the Hermite functions

hn(x) = 1√
(2nn!√π)

Hn(x)e−x2/2, (6)

where Hn(x) = (−1)nex2
(d/dx)ne−x2

are the Hermite polynomials of degree n. Let A be the
‘harmonic oscillator’ operator:

A = − d2

dx2
+ x2 + 1; (7)

A is densely defined on S0(R) and the Hermite functions are eigenfunctions of A:

Ahn = λnhn = (2n + 2)hn, n = 0, 1, . . . .

We observe that 1 ≤ λ0 ≤ λ1 ≤ · · · ≤ λn and
∑

n λ−2
n < ∞. We are in the condition of

Example 1.1. Therefore, for any non-negative integer p, we can define:

‖ξ‖p = ‖Apξ‖ =
( ∞∑

n=0

(2n + 2)2p(ξ, hn)
2

)1/2

,

where ‖ · ‖ indicates the L2 norm. The Schwartz space S(R) could be then ‘reconstructed’ as the
projective limit of the Hilbert spaces Sp(R) = {ξ ∈ L2(R); ‖ξ‖p < ∞}. That is,

S(R) =
⋂
p≥0

Sp(R). (8)

Therefore, the topological Schwartz space, with the topology defined by the ‖ · ‖p norms, is a
nuclear space. Since S(R) is a nuclear space, we can apply the Minlos theorem in order to define
probability measures on its dual space S ′(R). Consider the positive function F(t) = e−t , t ≥
0. It is obvious that F is a completely monotonic function. Therefore, the functional 	(ξ) =
F(‖ξ‖2), ξ ∈ L2(R), defines a characteristic functional on S(R). By Minlos theorem, there exists
a unique probability measure μ, defined on (S ′(R), B), such that:∫

S ′(R)

ei〈ω,ξ〉 dμ(ω) = e−‖ξ‖2
, ξ ∈ S(R). (9)

The probability space (S ′(R), B, μ) is called white noise space and the measure μ is called white
noise measure, or standard Gaussian measure, on S ′(R).

Consider the generalized stochastic process X, defined on the white noise space, such that for
each test function ϕ ∈ S(R):

X(ϕ)(·) = 〈·, ϕ〉. (10)

Clearly, for any ϕ ∈ S(R), X(ϕ) is a Gaussian random variable with zero mean and variance
E(X(ϕ)2) = 2‖ϕ‖2. Moreover, for any ϕ, φ ∈ S(R):

E(X(ϕ)X(φ)) = 2(ϕ, φ), (11)

where E(w) indicates the expectation value of the random variable w. We refer to the generalized
process X as the canonical noise of (S ′(R), B, μ).
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Remark 2.1 In view of the above properties the process X is a white noise [5], and this also
motivates the name ‘white noise space’ for the probability space (S ′(R), B, μ).

We have the following:

Proposition 2.1 For any h ∈ L2(R), X(h) is defined almost everywhere on S ′(R). Moreover,
it is Gaussian with zero mean and variance 2‖h‖2.

Proof We indicate with (L2) = L2(S ′(R), μ). Clearly, for any ξ ∈ S(R), we have that X(ξ) ∈
(L2) and

‖X(ξ)‖2
(L2) = E(X(ξ)2) = 2‖ξ‖2

L2 . (12)

For each h ∈ L2(R), there exists a sequence {ξn}n∈N of S(R)-elements which converges to h in
the L2(R)-norm. Therefore, from Equation (12), the sequence {X(ξn)}n∈N is Cauchy in (L2) and
converges to a limit function X(h), defined on S ′(R). �

The latter proposition states that for every sequence {ft }t∈R of L2(R)-functions, depending
continuously on a real parameter t ∈ R, there exists a Gaussian stochastic process

{Y (t)}t∈R = {X(ft )}t∈R, (13)

defined on the probability space (S ′(R), B, μ), which has zero mean, variance E(Yt )
2 = 2‖ft‖2

and covariance E(Y (t1)Y (t2)) = 2(ft1 , ft2).

Remark 2.2 Observe that if W(x), x ∈ R, is a Wiener process defined on the probability space
(�, F, P ), then the functional

X(ϕ) =
∫

ϕ(x) dW(x), ϕ ∈ L2(R), (14)

is a white noise on the space (�, F, P ). Therefore, if we indicate with 1[0,t)(x), t ≥ 0, the indicator
function of the interval [0, t), the process

X(1[0,t)) =
∫ t

0
dW(x) = W(t), t ≥ 0, (15)

is a one-sided Brownian motion.

Example 2.1 (Brownian motion) Let X be a white noise defined canonically on the white noise
space (S ′(R), B, μ). Looking at Equation (15), it is natural to state that the stochastic process

{B(t)}t≥0 = {X(1[ 0, t))}t≥0 (16)

is a ‘standard’Brownian motion5. Indeed, the process {X(1[ 0, t))}t≥0 is Gaussian with covariance:

E[X(1[0, t))X(1[0, s))] = 2(1[0, t), 1[0, s)) = 2 min(t, s), t, s ≥ 0.

Example 2.2 (Fractional Brownian motion) The stochastic process:

{Bα/2(t)}t≥0 = {X(fα,t )}t≥0, 0 < α < 2, (17)

where

fα,t (x) = 1

C1(α)
((t − x)

α−1/2
+ − (−x)

α−1/2
+ ), x+ = max(x, 0), (18)

and

C1(α) = �(α + 1/2)

(�(α + 1) sin(πα/2))1/2
, (19)

is a ‘standard’ fractional Brownian motion of order H = α/2 (see [20]).
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3. Grey noises

We have seen that the white noise is a generalized stochastic process X defined canonically on the
white noise space (S ′(R), B, μ), with space of test functions L2(R). We have remarked that the
white noise could also be defined starting from stochastic integrals with respect to the Brownian
motion. In this case the space of test function turns out to be the space of integrands of the
stochastic integral. Then, the Brownian motion B(t) could be obtained from the white noise by
setting B(t) = X(1[0,t)) [3]. We generalize the previous construction in order to define a general
class of H -sssi processes that includes Brownian motion, fractional Brownian motion and more
general processes.

Consider a one-sided fractional Brownian motion {Bα/2(t)}t≥0 with self-similarity parame-
ter H = α/2 and 0 < α < 2, defined on a certain probability space (�, F, P ). The fractional
Brownian motion has a spectral representation [20]:

Bα/2(t) = √
C(α)

∫
R

1√
2π

eitx − 1

ix
|x|1−α/2 dB̃(x), t ≥ 0, (20)

where dB̃(x) is a complex Gaussian measure such that dB̃(x) = dB1(x) + idB2(x) with
dB1(x) = dB1(−x), dB2(x) = −dB2(−x) and where B1 and B2 are independent Brownian
motion. Moreover,

C(α) = �(α + 1) sin
πα

2
. (21)

We observe that
1√
2π

eitx − 1

ix
= 1̃[0,t)(x), (22)

where we have indicated with f̃ (x) the Fourier transform of the function f evaluated on x ∈ R:

f̃ (x) = F (f )(x) = 1√
2π

∫
R

eixyf (y) dy. (23)

In view of Equation (22) we have

Bα/2(t) = √
C(α)

∫
R

1̃[0,t)(x)|x|1−α/2 dB̃(x). (24)

Therefore, if one defines a generalized stochastic process X such that for a suitable choice of a
test function ϕ

Xα(ϕ) = √
C(α)

∫
R

ϕ̃(x)|x|1−α/2 dB̃(x), (25)

one can write

Bα/2(t) = Xα(1[0,t)), t ≥ 0. (26)

Remark 3.1 The space of test function can be the space

�̃α = {f ∈ L2(R); ‖f ‖2
α = C(α)

∫
R

|f̃ (x)|2|x|1−α dx < ∞}, (27)

which coincides with a space of deterministic integrands for fractional Brownian motion
(see [12,13]).
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Consider now the Schwartz space S(R) equipped with the scalar product:

(ξ, η)α = C(α)

∫
R

ξ̃ (x)η̃(x)|x|1−α dx, ξ, η ∈ S(R), 0 < α < 2, (28)

where C(α) is given by Equation (21). This scalar product generate the α-norm in Equation (27).
We indicate with S(α)

0 (R) the completion of S(R) with respect to Equation (28).

Remark 3.2 If we set α = 1 in Equation (28), we have C(1) = 1 and

(ξ, η)1 =
∫

R

ξ̃ (x)η̃(x) dx =
∫

R

ξ(y)η(y) dy, (29)

so that, we recover the L2(R)-inner product. Moreover, S(1)
0 (R) = S0(R) = L2(R).

Starting from the Hilbert space (S(α)
0 (R), ‖ · ‖α), it is possible to reproduce the construction of

Example 1.1. Then, the space S(R) turns out to be a nuclear space with respect to the topology
generated by the α-norm ‖ · ‖α and an operator A(α). Here we just say that the main ingredient
are the generalized Laguerre polynomials:

Lγ
n (x) = x−γ ex

�(n + 1)

dn

dxn
(e−xxn+γ ), γ > −1, x ≥ 0, (30)

where n is a non-negative integer. They are orthogonal with respect to the weighting function
xγ e−x , ∫ ∞

0
xγ e−xLγ

n (x)Lγ
m(x) dx = �(n + γ + 1)

�(n + 1)
δnm, (31)

and satisfy the Laguerre equation:(
x

d2

dx2
+ (γ + 1 − x)

d

dx

)
Lγ

n (x) = −nLγ
n (x). (32)

Using Equation (31), it is easy to show that the sequence of functions {hα
n}n∈Z+ defined by⎧⎨

⎩
h̃α

2n(x) = an,αe−x2/2L
−α/2
n (x2), n ∈ Z+,

h̃α
2n+1(x) = bn,αe−x2/2xL

1−α/2
n (x2), n ∈ Z+,

(33)

is an orthonormal bases of S(α)
0 (R) with the choice

aα,n =
(

�(n + 1)

C(α)�(n + 1 − α/2)

)1/2

, bα,n =
(

�(n + 1)

C(α)�(n + 2 − α/2)

)1/2

. (34)

Then, using Equation (32), one can show that the orthonormal bases {hα
n}n∈Z+ is a set of

eigenfunction of an operator A(α), defined on S(α)
0 (R), with eigenvalues λ(α)

n = 2n + 2 − α + 1.

Remark 3.3 We recall the well-known relationships between Laguerre and Hermite polynomials:⎧⎨
⎩

H2n(x) = (−1)n22nn!L−1/2
n (x2)

H2n+1(x) = (−1)n22n+1n!xL
1/2
n (x2).

(35)

In view of the above relations, when α = 1 the orthonormal bases {hα
n}n∈Z+ reduces to the Hermite

bases of L2(R) [Equation (6)], which is preserved under Fourier transformation.
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By Proposition 1.2, starting from a completely monotonic function F , we can define character-
istic functionals on S(R) by setting 	(ξ) = F(‖ξ‖2

α). Then, we can use Minlos theorem in order
to define probability measures on S ′(R). We consider the Mittag-Leffler function of order β > 0:

Eβ(x) =
∞∑

n=0

xn

�(βn + 1)
, x ∈ R. (36)

It is known that the function Fβ(t) = Eβ(−t), t ≥ 0, is a completely monotonic function if
0 < β ≤ 1 [9]. For example, ifβ = 1 we recoverF1(t) = e−t . Therefore, the functional	α,β(ξ) =
Fβ(‖ξ‖2

α), ξ ∈ S(α)
0 (R), defines a characteristic functional on S(R). By Minlos theorem, there

exists a unique probability measure μα,β , defined on (S ′(R), B), such that:∫
S ′(R)

ei〈ω,ξ〉 dμα,β(ω) = Fβ(‖ξ‖2
α), ξ ∈ S(R). (37)

When α = β and 0 < β ≤ 1, the probability space (S ′(R), B, μβ,β) is called grey noise space and
the measure μβ,β is called grey noise measure (see [16,17]). In this article, we focus on the more
general case 0 < α < 2 and we call the space (S ′(R), B, μα,β) ‘generalized’grey noise space and
μα,β ‘generalized’ grey noise measure.

Definition 3.1 The generalized stochastic process Xα,β , defined canonically on the ‘generalized’
grey noise space (S ′(R), B, μα,β), is called ‘generalized’ grey noise. Therefore, for each test
function ϕ ∈ S(R):

Xα,β(ϕ)(·) = 〈·, ϕ〉. (38)

Remark 3.4 By the definition of ‘generalized’ grey noise measure [Equation (37)], for any
ϕ ∈ S(R), we have:

E(eiyXα,β (ϕ)) = Eβ(−y2‖ϕ‖2
α), y ∈ R. (39)

Using Equations (39) and (36), it easy to show that the ‘generalized’ grey noise has moments
of any order: ⎧⎪⎨

⎪⎩
E(Xα,β(ξ)2n+1) = 0,

E(Xα,β(ξ)2n) = 2n!
�(βn + 1)

‖ξ‖2n
α ,

(40)

for any integer n ≥ 0 and ξ ∈ S(R). It is possible to extend the space of test functions to the
whole S(α)

0 (R). In fact, for any ξ ∈ S(R) we have Xα,β(ξ) ∈ (L2) = L2(S ′(R), μα,β). Thus, for
any h ∈ S(α)

0 (R), the function Xα,β(h) is defined as a limit of a sequence Xα,β(ξn), where {ξn}
belong to S(R). Therefore, we have the following:

Proposition 3.1 For any h ∈ S(α)
0 (R), Xα,β(h) is defined almost everywhere on S ′(R) and

belongs to (L2).

Summarizing, the ‘generalized’ grey noise is defined canonically on the grey noise space
(S ′(R), B, μα,β) with the following properties:

(1) For any h ∈ S(α)
0 (R), Xα,β(h) is well defined and belong to (L2).

(2) E(eiyXα,β (h)) = Eβ(−y2‖h‖2
α) for any y ∈ R.

(3) E(Xα,β(h)) = 0 and E(Xα,β(h)2) = (2/�(β + 1))‖h‖2
α .
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(4) For any h and g that belong to S(α)
0 (R), one has:

E(Xα,β(h)Xα,β(g)) = 1

�(β + 1)
[(h, g)α + (h, g)α]. (41)

If we put β = 1, the measure μα,1 := μα is a Gaussian measure and Xα,1 := Xα is a Gaussian
noise. In fact, for any h ∈ S(α)

0 (R), the random variable Xα(h) is Gaussian with zero mean and
variance E(Xα(h)2) = 2‖h‖2

α (see Equation 39). When α = 1, Xα reduces to a ‘standard’ white
noise (see Remark 3.2 and Remark 3.3). Moreover, for any sequence {ft }t∈R of S(α)

0 (R)-functions,
depending continuously on a real parameter t ∈ R, the stochastic process Y (t) = Xα(ft ) is
Gaussian with autocovariance given by Equation (41)

E(Y (t)Y (s)) = E(Xα)(ft )Xα(fs) = (ft , fs)α + (ft , fs)α. (42)

Example 3.1 (Fractional Brownian motion) For any t ≥ 0 the function 1[0,t) belongs to S(α)
0 (R).

In fact, it is easy to show that ‖1[0,t)‖2
α < ∞ when 0 < α < 2 and

‖1[0,t)‖2
α = C(α)

2π

∫
R

dx
2

|x|1+α
(1 − cos tx) = tα. (43)

Therefore, we can define the process

Bα/2(t) = Xα(1[0,t)), t ≥ 0. (44)

The process Bα/2(t) is a ‘standard’ fractional Brownian motion with parameter H = α/2. Indeed,
it is Gaussian with variance E(Bα/2(t)

2) = 2‖1[0,t)‖2
α = 2tα and autocovariance:

E(Bα/2(t)Bα/2(s)) = (1[0,t), 1[0,s))α + (1[0,t), 1[0,s))α

= C(α)

2π

∫
R

dx
2

|x|α+1
(1 − cos tx + 1 − cos sx − 1 + cos(t − s)x)

= tα + sα − |t − s|α = γα(t, s), t, s ≥ 0.

In view of the above example, Xα could be regarded as a fractional Gaussian noise defined on
the space (S ′(R), B, μα).

Example 3.2 (Deconvolution of Brownian motion) The stochastic process

{B(t)}t≥0 = {Xα(gα,t )}t≥0, (45)

where, for each t ≥ 0, the function gα,t is defined by

g̃α,t (x) = 1√
C(α)

1̃[0,t)(x)(ix)(α−1/2), (46)

is a ‘standard’ Brownian motion. Indeed, it is Gaussian, with zero mean, variance

E(B(t)2) = 2
∫

R

|x|1−α|1̃[ 0,t)(x)|2|x|α−1 dx = 2
∫

R

|1̃[ 0,t)(x)|2 dx = 2t, (47)

and autocovariance

E(B(t)B(s)) =
∫

R

(
1̃[0,t)(x)1̃[0,s)(x) + 1̃[0,s)(x)1̃[0,t)(x)

)
dx = 2 min(t, s). (48)
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Remark 3.5 The representation of Brownian motion in terms of the fractional Gaussian noise
Equation (45) corresponds to a particular case of the so-called deconvolution formula, which
expresses the Brownian motion as a stochastic integral with respect to a fractional Brownian
motion of order H = α/2 (see [14]). More generally, we can represent a fractional Brownian
motion Bγ/2(t) of order H = γ /2, 0 < γ < 2 in terms of a fractional Gaussian noise of order
α, which corresponds to a representation of Bγ/2 in terms of a stochastic integral of a fractional
Brownian motion Bα/2 of order H = α/2, 0 < α < 2 (see Example 3.3).

Example 3.3 (Deconvolution of fractional Brownian motion) The stochastic process,

{Bγ/2(t)}t≥0 = {Xα(gα,γ,t )}t≥0, (49)

where

g̃α,γ,t (x) =
√

C(γ )

C(α)
1̃[0,t)(x)(ix)(α−γ /2), 0 < γ < 2, (50)

is a ‘standard’ fractional Brownian motion of order H = γ /2.

We now consider the general case 0 < α < 2, 0 < β ≤ 1.

Definition 3.2 The stochastic process

{Bα,β(t)}t≥0 = {Xα,β(1[0,t))}t≥0, 0 < α < 2, 0 < β ≤ 1 (51)

is called ‘generalized’ (standard) grey Brownian motion.

The ‘generalized’ grey Brownian motion Bα,β has the following properties that come directly
from the grey noise properties and Equation (43):

(1) Bα,β(0) = 0 almost surely. Moreover, for each t ≥ 0, E(Bα,β(t)) = 0 and

E(Bα,β(t)2) = 2

�(β + 1)
tα. (52)

(2) The autocovariance function is

E(Bα,β(t)Bα,β(s)) = γα,β(t, s) = 1

�(β + 1)
(tα + sα − |t − s|α). (53)

(3) For any t, s ≥ 0, the characteristic function of the increments is

E(eiy(Bα,β (t)−Bα,β (s))) = Eβ(−y2|t − s|α), y ∈ R. (54)

The third property follows from the linearity of the grey noise definition. In fact, suppose 0 ≤
s < t , we have y(Bα,β(t) − Bα,β(s)) = yXα,β(1[0,t) − 1[0,s)) = Xα,β(y1[s,t)), and ‖y1[s,t)‖2

α =
y2(t − s)α . All these properties are enclosed in the following:

Proposition 3.2 For any 0 < α < 2 and 0 < β ≤ 1, the process Bα,β(t), t ≥ 0, is a self-similar
with stationary increments process (H -sssi), with H = α/2.
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Proof This result is actually a consequence of the linearity of the noise definition. Given a
sequence of real numbers {θj }j=1,...,n, we have to show that for any 0 < t1 < t2 < · · · < tn and
a > 0:

E

⎛
⎝exp(i

∑
j

θjBα,β(atj ))

⎞
⎠ = E

⎛
⎝exp(i

∑
j

θj a
α/2Bα,β(tj ))

⎞
⎠ .

The linearity of the grey noise definition allows to write the above equality as

E

⎡
⎣exp

⎛
⎝iXα,β

⎛
⎝∑

j

θj 1[0,atj )

⎞
⎠

⎞
⎠

⎤
⎦ = E

⎡
⎣exp

⎛
⎝iXα,β

⎛
⎝aα/2

∑
j

θj 1[0,tj )

⎞
⎠

⎞
⎠

⎤
⎦ .

Using Equation (39) we have

Fβ

⎛
⎝‖

∑
j

θj 1[0,atj )‖2
α

⎞
⎠ = Fβ

⎛
⎝‖aα/2

∑
j

θj 1[0,tj )‖2
α

⎞
⎠

which, because of the complete monotonicity, reduces to

‖
∑

j

θj 1[0,atj )‖2
α = aα‖

∑
j

θj 1[0,tj )‖2
α.

In view of the definition [Equations (28) and (22)], the above equality is checked after a sim-
ple change of variable in the integration. In the same way we can prove the stationarity of the
increments. We have to show that for any h ∈ R:

E

⎡
⎣exp

⎛
⎝i

∑
j

θj (Bα,β(tj + h) − Bα,β(h))

⎞
⎠

⎤
⎦ = E

⎡
⎣exp

⎛
⎝i

∑
j

θj (Bα,β(tj )

⎞
⎠

⎤
⎦ .

We use the linearity property to write

E

⎡
⎣exp

⎛
⎝iXα,β

⎛
⎝∑

j

θj 1[h,tj +h)

⎞
⎠

⎞
⎠

⎤
⎦ = E

⎡
⎣exp

⎛
⎝iXα,β

⎛
⎝∑

j

θj 1[0,tj )

⎞
⎠

⎞
⎠

⎤
⎦ .

By using the definition and the complete monotonicity, we have

‖
∑

j

θj 1[h,tj +h)‖2
α = ‖

∑
j

θj 1[0,tj )‖2
α

which is true because

1̃[h,tj +h)(x) = 1√
2π

eixh

ix
(eixtj − 1).

�

In view of Proposition 3.2, {Bα,β(t)} forms a class of H -sssi stochastic processes indexed
by two parameters 0 < α < 2 and 0 < β ≤ 1. This class includes fractional Brownian motion
(β = 1), grey Brownian motion (α = β) and Brownian motion (α = β = 1).

In Figure 1, we present a diagram that allows us to identify the elements of the class. The long-
range dependence6 domain corresponds to the region 1 < α < 2. The horizontal line represents the
processes with purely random increments, that is, processes that possess uncorrelated increments.
The fractional Brownian motion is identified by the vertical line (β = 1). The lower diagonal line
represents the grey Brownian motion.
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Figure 1. Parametric class of generalized grey Brownian motion. The upper diagonal line indicates the ‘conjugated’
process of grey Brownian motion.

4. Master equation and concluding remarks

The following proposition characterizes the marginal density function of the process {Bα,β(t), t ≥
0}:

Proposition 4.1 The marginal probability density function fα,β(x, t) of the process
{Bα,β(t), t ≥ 0} is the fundamental solution of the ‘stretched’ time-fractional diffusion equation:

u(x, t) = u0(x) + 1

�(β)

∫ t

0

α

β
sα/β−1(tα/β − sα/β)β−1 ∂2

∂x2
u(x, s) ds, t ≥ 0. (55)

Proof Equation (54) (with s = 0) states that f̃α,β(y, t) = Eβ(−y2tα). Using Equation (36), we
can show that the Mittag-Leffler function satisfies

Eβ(−y2(tα/β)β) = 1 − y2

�(β)

∫ tα/β

0
(tα/β − s ′)β−1 Eβ(−y2s ′β) ds ′

= 1 − y2

�(β)

∫ t

0

α

β
sα/β−1(tα/β − sα/β)β−1 Eβ(−y2sα) ds,

where we have used the change of variables s ′ = sα/β . Thus, fα,β(x, t) solves Equation (55) with
initial condition u0(x) = fα,β(x, 0) = δ(x). �

We refer to Equation (55) as the master equation of the marginal density function of the
‘generalized’ grey Brownian motion. Therefore, the diagram shown in Figure 1 can also be read
in terms of partial integro-differential equation of fractional type. When α = β and 0 < β ≤ 1,
we recover the time-fractional diffusion equation of order β (lower diagonal line). When β = 1
and 0 < α < 2, we have the equation of the fractional Brownian motion marginal density, that is
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the equation of a stretched Gaussian density (vertical line). Finally, when α = β = 1 we find the
standard diffusion equation.

From Proposition 4.1 it follows that the parametric class {Bα,β(t)} provides stochastic models
for anomalous diffusions described by Equation (55). Looking at Equations (52) and (53), which
describe the variance and the covariance function respectively, it follows that:

• When 0 < α < 1, the diffusion is slow. The increments of the process Bα,β(t) turn out to be
negatively correlated. This implies that the trajectories are very ‘zigzaging’ (antipersistent).
The increments form a stationary process which does not exhibit long-range dependence.

• When α = 1, the diffusion is normal. The increments of the process are uncorrelated. The
trajectories are said to be ‘chaotic’.

• When 1 < α < 2, the diffusion is fast. The increments of the process Bα,β(t) are positively
correlated. So that, the trajectories are more regular (persistent). In this case the increments
exhibits long-range dependence [20].

The stochastic processes considered so far, governed by the master Equation (55), are of course
non-Markovian. We observe that non-Markovian equations like Equation (55) are often associated
to subordinated stochastic processes D(t) = B(l(t)), where the parent Markov process B(t) is a
‘standard’ Brownian motion and the random time process l(t) is a self-similar of order H = β

non-negative non-decreasing non-Markovian process. For example, in Kolsrud [4] the random
time l(t) is taken to be related to the local time of a d = 2(1 − β)-dimesional fractional Bessel
process, whereas in Meerschaert et al. [8] (see also [2] and [19]), in the context of Continuous
Time Random Walk, it is interpreted as the inverse process of the totally skewed strictly β-stable
process. Heuristically, our stochastic process {Bα,β(t), t ≥ 0} cannot be a subordinated process
(e.g. if β = 1 it reduces to a fractional Brownian motion). Therefore, here we provided an example
of a class of stochastic models associated to time-fractional diffusion equations like Equation (55),
which are not subordinated processes.

It is important to remark that, starting from a master equation that describes the dynamic
evolution of a probability density function f (x, t), it is always possible to define an equivalence
class of stochastic processes with the same marginal density function f (x, t). All these processes
provide suitable stochastic models for the starting equation. In this paper, we focused on a subclass
{Bα,β(t), t ≥ 0} associated to the non-Markovian equation Equation (55). This subclass is made
up of processes with stationary increments. In this case, the memory effects are enclosed in the
typical dependence structure of a H -sssi process [Equation (53)]; while, for instance in the case of
a subordinated process, these are due to the non-Markovian property of the random time process.

It is also interesting to observe that the ‘generalized’ grey Brownian motion turns out to be a
direct generalization of a Gaussian process. Indeed, it includes the fractional Brownian motion
as particular case when β = 1. Moreover, for any sequence of real numbers {θi}i=1,...,n, if one
considers the collection {Bα,β(t1), . . . , Bα,β(tn)} with 0 < t1 < t2 < · · · < tn, it is easy to show
that

E

⎛
⎝exp

⎛
⎝i

n∑
j=1

θjBα,β(tj )

⎞
⎠

⎞
⎠ = E

⎛
⎝exp

⎛
⎝iXα,β

⎛
⎝ n∑

j=1

θj 1[0,tj )

⎞
⎠

⎞
⎠

⎞
⎠

= Eβ

⎛
⎝−

∥∥∥∥∥∥
∑

j

θj 1[0,tj )

∥∥∥∥∥∥
2

α

⎞
⎠ = Eβ

⎛
⎝−�(β + 1)

1

2

∑
i,j

θiθj γα,β(ti , tj )

⎞
⎠ ,

(56)

where γα,β is the autocovariance matrix Equation (53). It is clear that, fixed β, the ‘generalized’
grey Brownian motion is defined only by its covariance structure. In other words, Bα,β(t) provides
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an example of a stochastic process characterized only by the first and second moments, which is
a property of Gaussian processes.

Some applications of this analysis can be found in recent papers by Mura et al. (see [10,11]).

Notes

1. Anomalous diffusion is characterized by the asymptotic time power-law behaviour of the variance for large times:
σ 2(t) ∼ tγ . Namely, the diffusion is slow if the exponent γ is lesser than one, normal if it is equal to one and fast
if it is greater than one.

2. The coarsest topology defined on X, which makes these functions continuous.
3. An Hilbert–Schmidt operator is a bounded operator A, defined on an Hilbert space H , such that there exists an

orthonormal basis {ei}i∈I of H with the property
∑

i∈I ‖Aei‖2 < ∞.
4. A function F(t) is completely monotone if for t > 0 it is non-negative and possesses derivatives of any order such

that (−1)k(dk/dtk)F (t) ≥ 0, t > 0, k ∈ Z+ = {0, 1, 2, . . .}.
5. With the word ‘standard’ Brownian motion we mean that E(B(1)2) = 2.
6. An H -sssi process is said to possess long-range dependence if the discrete process of the increments exhibits long-

range dependence. That is, if the increments autocorrelation function tends to zero like a power function and such
that it does not result integrable [20].
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